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Abstract

In this paper we introduce linear methods for interpolation or
approximation of given data sets (scattered points, lines, planes)
or explicitly given surfaces by ruled surfaces (non developable or
developable). For surface description we will use the dual repre-

sentation of ruled surfaces.

1 Introduction

A ruled surface is a surface which has the property that through every
point of the surface there passes a straight line which lies entirely on the
surface. Thus, the surface is covered by a one parameter set of straight
lines, called rulings or generators. Each ruling lies in the tangent plane
at every point of the ruling. If the tangent plane varies from point to
point the ruled surface is called non developable (general ruled surface),
the ruled surface is developable if and only if the tangent planes at all
points of a ruling coincide to one plane. Thus the tangent planes of a
developable surface form a family depending on one parameter, while the
tangent planes of a general ruled surface form a family depending on two

parameters.

T'he usual description of a ruled surface in the “Bézier B-Spline world”
is a tensor-product Bézier or B-Spline surface linear in one parameter.
This description has some disadvantages, especially since there are no
criteria to decide easily whether a ruled surface is developable or not.
Another approach was introduced in 15], in which the dual mapping
with dual numbers, well known in kinematics, is used whereas in 12],{14]
Pluecker coordinates are introduced for ruled surface description.

In (10],{11],[13] interpolation and approximation for developable sur-
faces 1s developed with the help of dual B-Splines '7]. In this paper we
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will introduce a general method for interpolation and approximation with
ruled surfaces in dual description. The advantages of this approach are

o the developable surfaces are to be considered as special cases and
can be treated with the same concept,

e one can interpolate and approximate lines, points and tangent planes

linearly.

The usual B-Spline representation of a rational ruled surface in ku-
clidean 3-space E° has the parametric representation

Y(u.: ‘U] = Z DigNgk(‘U,)(l — ’U) -+ Z DﬂN,-k(u)v
1=0 =0

in which Djo.D;, are the control poeints in homogeneous coordinates
and N {u) are normalised B-Spline functions of order k. If the D;; are
not at inﬁnity we can write D{j = (wfj,w,;jz,-j,wt-jy,_:j,wz-jz.,;j) with WEightS
wi; # 0 and d;; = (245, yij, z;;) as Cartesian coordinate vectors of the con-
trol points. We will only consider open rational B-Spline surfaces, thus

we choose a knot vector T := (vg = V1 = oo = Vg1, Vky ooy Uny Upel = oo =
vn+k) With a monotone sequence v;. If the knot sequence has only the
values T := (vg = v] = ... = Vg_1, V¢ = Vg1 = ... = Ugz—1) the B-Spline

description changes to the Bézier representation.

While Y(u,v) describes a surface as a focus of points, we can also
interpret a ruled surface as an envelope of its tangent planes. For this
transformation we use the principal of duality from projective geometry,
therefore we have to exchange

points = planes

and obtain as a representation of a dual linear tensor-product B-Spline
surtace

Y(u, ’U) = i U;‘g.N,‘k(U)(l — ‘U) + Zj: U;, Nik(u)v

(1.1
= (yﬂ(u*r ‘U), yl(u: U): y?(uﬁ ?-’1)& yS(u: ’U))

in which the vectors U;; are the homogeneous plane coordinate vectors
of the control planes. Formula (1.1) represents a two parametric set of
planes whose explicit equation in E? is
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yU(uv U) + yl(uv U)J: + yE(UHU)y -+ y::-,('tt, U)Z = {J. (]2)

Then the required ruled surface is the envelope of the planes (1.2).
This equation determines a one parametric set of planes for v = const.,
whose envelope is a developable surface.

The parameter v in (1.1) is unimportant for the description of a ruled
surface, it only gives information on a region of interest!

U1o

U ot
Voo

FIGURE 1. A (general) ruled surface and its control planes

Taking the well known properties of the B~Spline surfaces it follows
for the control planes Uy;, that Ugg, Uor, Uno, Uy are tangent planes at
the boundary generators of the ruled surface over the given knot vector,
the lines Ugg N Upy and U, N U,y determine the boundary generators of
the ruled surface. additionally Ugy N Ugt M Uy, Uge N Uy N Uy, Use N
U NU, 10, U NU, NU, .y, determine the corner points of the ruled

surface patch (see Figure 1).
The generators of the ruled surface follow as an intersection of the

plane Y (u,v) and its derivatives

?}’_
Jv

and have the direction vector

(u) = Yv(u)

a(u, v) = N(u,v) A Ny(u,v) (1.3)

with N{u, v) as normal vector of the plane (1.2). A point on the ruled
surface can be described by

Plu,v) = Y{u,v) A Yolu,0) A Yo(u,v) (1.4)
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with Y, and Y, as derivatives of Y with respect to v and w.

For Y, (ug) = O the generator at ug is a so-called torsal ruling. In this
case the surface has locally the behaviour of a developable surtace, the
parametric representation Y does not depend on the parameter v. For
torsal rulings the generators and points must be calculated according to

(1.10) and (1.11) instead of {1.3) and (1.4).

With the help of (1.4) we can transform the dual representation into
the usual tensor product representation in the point space. If we, formally,

write (1.1)
Y(u,v):=Lo(u)(l —v)+ Li(u)v (1.5)
with
Lo(u) =) Ui Nix(u), Li(u) =) Uiy Ni(u),
1=0 =0

we obtain from (1.4) as a tensor product representation

P(u,v) = (Lo AL; ALg)(1 = v) 4+ (Lo AL; A Ly)v (1.6)

Thus, the corresponding tensor product surface has the order

(3k —2,1).

The rulings g(u) of the general ruled surface are the intersection lines
of the tangent planes Lo(u) and Lj{u). Instead of (1.3) we can use

g{u) = Lo(u) N L;i(u).

Choosing U,p = U, =: U; in (1.1) the ruled surface is developable:
(1.1) describes the one parametric set of planes.

Y (u) = i:U,-h'ik(u). (1.1a)

1=0
Formula (1.1a) now represents a one pararnetric set of planes with the
explicit equation in E3

yo(u) + yi{u)x + y2(u)y + ya(u)z = 0. (1.2a)

Developable surfaces can be unfolded or developed onto a plane with-
out stretching or tearing. They are of considerable importance to sheet-
metal-based industries. Those surfaces occur in many applications as with
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windshleld design, blank holder surfaces, for sheet metal forming process,
aircraft skins, ship hulls, ductwork, feeder (shoulder surface of a packing
machine} and within a lot more applications 13],[12] while general ruled
surfaces are of large interest in architectural design 1], wire electric dis-
charge machining [15,{16] and NC-milling with a cylindrical cutter 4].

An envelope of a one parametric set of planes is a developable surface
and 1ts edge of regression is the locus of the singularities. In general we
want to create strips of developable B-Spline surfaces that are regular,
1.e. contalning no singular points. With the well-known properties of
B-Spline curves [9] it follows that Uy and U, are tangent planes at the
boundaries of the developable surface over the given knot vector. The
lines UgN Uy and U, N U,_; determine the boundary generators of the
developable surface so UoNU; MU, and U, NU,_;NU,_, determine the
points of regression at the boundary generators (see Figure 2). Further, it
can be shown that a dual B-Spline curve is formed of developable Bézier
surfaces pieced together along the rulings to the knots t = v; of multiplic-
ity p with the continuity C*—#=1 [13].

The generators of the developable surface follow as an intersection of
the plane Y (u) and its derivatives Y(u) and have the direction vectors

a(u) = N(u) A N(u) (1.7)

with N(u) as normal vector of the plane (1.2a). The edge of regression
or cuspoidal edge is obtained as an intersection Y (u) N Y (u) N Y (u). Its
explicit representation can be described by

Clu) = Y(u) AY{(u)AY(u). (1.8)

FIGURE 2. A developable surface and its control planes
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Algorithms converting the dual representation of developable surfaces
to a standard tensor product form have already been given in (131, They
are particularly simple if the patch is to be confined by planar bound-
ary curves. This is due to the fact that the intersection of a developable
NURBS surface Y with a plane U is a NURBS curve; its lines (of its
dual form) are simply the intersections of the control planes of Y with the

plane U.

2 Interpolation with ruled surtaces

In order to avoid non-linearity we use a linear description of lines: 1f two
plane vectors V; and V, intersect in a line g = V, NV ,, then these planes
determine a pencil of planes through g. Each plane V of the pencil can be
described with the help of real parameters A;, A, by a linear combination

V= AV + AV, (2.1)

First we will discuss interpolation by non developable or developable
surfaces and discuss the following problems.

a) desermine a ruled surface interpolating the generators
& (_} = 1. ..11111),

b) determine a ruled surface interpolating the boundary generators, the
tangent planes in the corner points of a patch and some generators
g; in the interior of the surface (j = 1... M,),

¢} determine a ruled surface interpolating some points P, (j = 1... M;)
and some generators g; (7 = 1... M,).

For these problems we get the following solutions for non developable
surfaces:

For problem a) we can subdivide our problem in two parts: The
generators of a ruled surface according to (1.1), (1.5) are determined by
the intersection of the planes Lo(u), Li(u).

Fach given generator may be determined by the intersection of the

planes E;. Q; (7 = I... M;) with the parameter value u = u;. Thus, we
have to colve the two linear systems

Lo(u;) = o;E; + Q;, Li(uy) = E,+3Q, (2.2)
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with a; and (; as scalar unknowns.
Iz general, we could also introduce a scalar factor for Q; on the left hand
side equation and for E; on the right hand side equation. Our special
choice of scalar factors leads to a better numerical condition of the matrix
solving the interpolation problem.

In (1.5) and (2.2) we have two sets of independent equations, thus we
can decompose our interpolation problem 1n two parts: the left hand side
equations in {1.5) and (2.2) and the right hand side equations. For each
problemn we obtain from (2.2) 4M, equations with 4(n + 1) components of
the control planes and M; scalar unknowns a; {or 3;). Thus, we have to

fulfil the balance equation

For pr{)blem b) we have Ugg = Tg.g., U01 = T011 Unl} — TﬂUTnU: Unl —

7..T,.. with Tx as tangent planes at the corner points and 7,0, 7o as
scalar factors. The corner points P must satisfy the equations of the
tangent planes Ty trivially but we have, furthermore, the conditions

UlD ' Poo - 0.,. U11 ’ PUl — 0: IJn—l,U ) PnD — 01 Un—l,l ) Pnl = 0 (24)

in which the corner points P;; are used in a homogeneous representa-

tion.

Equations of type (2.2) have to hold for the generators in the interior
of this surface. Again, we can separate the interpolation problem in two
parts determined by the left hard side equations in (2.4} and (2.2) and
the right hand side equations. In each sub-problem we have the following
numbers of unknowns: 4(n — 1) components of the control planes, one
unknown Tng (or T,;) and M; unknowns ¢; (or 3;) according to (2.2).

We obtain 4M, equations from (2.2) and additionally 2 equations from
condition {2.4). Thus, we have as a balance condition

For problem c) we have to fulfil the point conditions

P, Y(u;,v;) =0, P; - Yyu(u;,v;) =0, P;- Y, (uj,v;) =0 (2.6)

Parameters v; can be arbitrary chosen. Therefore, 1t is not possible to

separate the problem in two parts: the conditions (1.5}, (2.2 for interpo-
lating of lines have to be fulfilled simultaneously. We have as unknowns
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the 8{nn + 1) components of the control planes and 2M, scalar unknowns
«,, ;. From My points we get 3M; equations and from My generators we
get 8My equations. This leads to the balance condition

6M; + 3Ms = 8(n + 1) (2.7)

Figure 3 contains an example of an interpolating ruled B-spline surface.
We have chosen 6 points P; and 9 generators g; and order £ = 3 with
n = 8.

Qs

F1GURE 3. Interpolating ruled surface with given points {circles) and
generators (bold)

Now, we will discuss the interpolation with developable surfaces
and consider the problems aj, b), ¢) again:

For problem a} we have instead of (1.3), (2.2) with (1.1a) the condi-
tions

2 UiNu(u;) = E; +Q,, Y UiNu(w;) =E; + 5,Q;  (2.8)
1=0

t=0)

with «;, f; as scalar unknowns. Both equations in (2.8) are depen-
dent on the unknown control planes U;. Therefore we have to solve the
corresponding system simultaneously: For M; given lines we obtain 8/,
equations with 4(n + 1) components of the control planes and 2M| scalar
unknowns «;, f;. Instead of (2.3) we get the balance condition

4T1-61M1+4=0.

For problem b) we now have Uy = Ty, U, = 7, T, as tangent planes
at the boundary rulings. Instead of (2.4) we now have

U1 ' Po — O.} Un-—-l . Pn = 0 (29)
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and obtain for M, given rulings &M, equations and two additional
equations from (2.9). As unknowns we have 4(n — 1) components of the
coutrol planes and 2M; unknowns a;, ;. This leads to the balance con-

dition
4n — 6 = 6JW2.

For problem c¢) we have to fulfil the point conditions

P; Y(u;) =0, P; - Y.(u,) =0

and get for M; given points 2M3 equations and for My given rulings
8 M, equations. On the other hand we have 4(n+ 1) unknown components
of the control planes and 2M; unknown parameters o;, §;. This leads to

the balance condition
2Ms +6M, = 4(n 4+ 1).

Figure 4 gives an example of an interpolating developable dual B-
Spline surface of order 8 (6 generators (problem a) are given):

A

FIGURE 4. Interpolating developable surface (given generators bold)

3 Approximation with ruled surfaces

In this section we will consider the following two problems:

Problem A): given an analytic surface or tensor product surface, we
require 2 ruled surface whose generators ¢; are as close as possible to the
given surface,
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Problem B): given a set of scattered data points P; possibly from a
laser scan, we require a ruled surface whose generators g; are as close as

possible to the given points.

The given surface or the set of scattered data points determine the

area of interest (a suitable box around the surface of the data).

The crucial point of approximation with ruled surfaces is the choice of
an appropriate error measurement. In [14} Pluecker coordinates are used
for error measurement, while in [11] the distance from a point to a line
was used, which leads unfortunately to a non linear optimisation problem.
In the presented paper we will introduce an error measurement between

planes ({10}) which leads to linear algorithms. We only require the as-
sumption that every tangent plane of the given surface must intersect the

z—axis of our coordinate system!

For problem A) we determine on the given surface two sets of tangent
planes E;, Q; along two curves v = const. at points with the parameter
values v; (7 = 0,..., M). With our assumption on the coordinate system

the tangent planes can have the explicit form

zZ =€+ €1 + €3y or

E(z,y): = e? + €1+ efy
(7 =0,...,.M) (3.1)
Qj(z,y): =¢ +qz+qy
Both sets of planes E;, Q, will be approximated by two sets of tangent

planes (two dual B-Spline curves) Lo(u) and L; (%) according to (1.5) and
we choose as objective functions

M M
_‘;OHLo(uj) ~ E;||* — min., ; ILy(w;) — Q)2 — min.  (3.2)

In our coordinate system we can normalise the control planes U
(s =0,1;:=0,...,n) by

I

(w?srw'l wiT_I)T} (3'3)

U”:(uo ul | u? u3)T s

t5? s 1Y s

thus the plane equations Lo(u), Li(u) have, with respect to (1.1) and
(1.5), the explicit form

Lo(u;)(z,y) := lou;) + lo(u;)z + 1(u;)y
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Lyi(uw) e, y) = 0(wy) + [ (u)z + lu;)y.

Using the L?-norm for our minimisation problem we obtain from (3.2)

M

24 h
=3 / / (Lo(w;)(z,y) — E;(z,y))dedy — min.

(3.4

M .d b
I := ;}/C ]ﬂ (Ln(u; )z, y) ~ Q;(z,y))’dzdy — min.

with [a,b] x [¢, d] as domailn of our interest over the (z,y)-plane. In
geometric terms we will minimise the z—distances between the tangent
planes of a given surface and the approximation suface over the domain

(a,b] % [c,d].

The minimum of (3.4) is determined by differeatiation of (3.4) with
respect to the unknown components wi,, w?, w? of the control points

according to (3.3}
Il a1, a1

aw?s — awi‘ — au;i = { (3 = 0, 1 1 = 0,--.,,?’1). (35)
We introduce the matrix
: a+b d+c

G:=|6{a+b) 4(a®*+b*+ab) 3a+b)(c+d) |, (3.6)
6(d +¢c) 3{a+b)(c+d) 4(c*+ d*+ cd)

and the abbreviation (with{ =0,...,n; ¢=20,...,n)

M
ny,; = ;Ngk(uj)f\&k(uj) (3?)

and obtain after integration of (3.4) from (3.5) for s = 0 the 3(n+1) x

3(n + 1) linear system with the unknown components w9, wl,,w?

M 6? T w?ﬂ
ZG 61 Nik(uj) = ZG w}u Tyl (Z == ,...,n). (38)
1=0 6%. =0 w?o

J

For s = 1 we have to exchange in (3.8) e by q_f:,- and w!, by wi, (I =
0,1,2). Because det(G) = 2(a ~ b)’(c —d)* # 0for a # b,c # d, we can
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oliminate the matrix G in (3.8), thus the required solution 1s independent , r
on the chosen domain. ) ! ?h;l;eﬁjngno;ifi .o;tge normals of {A, } B-Il;ld Fhe mean value of {C,}.
We have to solve (3.8) for s = 0,1 and btain the control planes e of E .Pbr ; 1e mean values of {C;} 15 chosen as a parameter
of the required approximation surface according to (3.3) and the surface A
representation with (1.1) or (1.5). Figure 5 gives an example of the ap- Ci — Ypmin
proximation of a given surface by a ruled B-Spline surface of order 3 and Yy = ym;r i (3.9)

- — 90. For the approximation 30 tangent planes Were chosen at each
boundary curve of the given surface.

P ey Y

- A EMRAY !
a -3 [ A ) Tl‘-“‘ +.I-|!l' v

A R

AT ---. 1?_“..’|l1!.

7 oA R D,

"‘. g P P o .y -.-_ri-i'itﬂl!:l" " ',‘

/ 1,” ,f I_}.-}?ﬁ!p!_‘.".;!l‘.lﬂr.. !_!.‘-?,i"!!l.' r*'ii'r""'l'#f

AT T TR RN A i

%7 ~¢'-'-'=t-?‘i§f"ia?a.'=.===5ﬁ%'n%i-'!:ﬁ"s'e;ﬁ:’;?"f: "

K

W AL DS

l
ARSI P Ly (Pl
AR ey
U e s
;’ég,ff&f».@'z’%:*-..,.,w,é’gf
NI RS Gt
*:,{g;;.f/,/%ﬁ’{%/ "';?;i;q,!q'fi;:;ﬁﬁff"
il Ui
g i

FIGURE 6. Set of scattered points and the corresponding triangula;tion

FIGURE 5. Approximation of a given surface (bold) by a ruled surface (first figure) and generators of the approximating developable sur”
surace
If we approximate the given surface by a developable surface we have (second figure}

to solve only one system 1n (3.8) and find the solution according to (1.1a). Analo ] :
gously to (3.4) we will generate our requ red d >
Y using the L° norm qured developable surface

Now we will discuss our problem B) and we demonstrate here only

the approximation by a developable surface: we use as a basis of our algo- N
rithm an approximating triangulation of the given set of points following $° / Imes /’ ey 0,
an algorithm of Hoppe (5], where the facets of the triangulation approxi- =0 vmen Izmin (Y(u;)(z,y) ~ E,(z,y)) dzay — muin. (3.10)

mate the set of points within an error tolerance 9.
Similar to problem A we have to solve the linear system (3.8) only

For parametrisation of the triangulation we determine for each triangle for one index s and obtain with (3.3) and (1.1a) tae required developable
the centre of gravity C: and project these centres in the z, y-plane. The surface. Figure 6 demonstrates the approximation of a set of scattere(i
boundary of our region of interest may be determined by the minimal points by a developable surface: in the first figure we have the cloud

4 mavimal value of these projections (Zmins Tmazs Ymin: Ymas). We of points and the triangulation while the second figure shows a set of
choose the interval I = {ym{n,ymw] as parameter interval of the required gt?nerators of an approximating developable Beézier surface of degree 4
approximation surface and subdivide I into N + 1 strips of the length 0. with a prescribed error tolerance. '

In a strip with index 7 (7 = 0, -, N) we pick out all triangles {A;} with
y—component of C; in this strip, and determine a least square plane E,
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4 Approximation of surfaces of revolution

Approximations of surfaces of revolution by ruled surfaces are required
for wire electric discharge machining. We will develop methods for ap-
proximation of surfaces of revolution by developable and (general) ruled
surfaces. The approximation by developable surfaces can be used addi-
tionally m order to construct a surface of revolution with the help of planar

segments (part of cones).

A surface of revolution 1s obtained by rotating a planar (or a non
planar) curve about an axis of revolution rigidly connected with the curve
through a complete revolution. We shall choose the axis of revolution
as the z-axis of the coordinate system. The intersections of the surface

of revolution with planes through the axis are called meridians. They
are congruent curves and can be represented by the parametric (Bézier)

representation (meridian curve in plane z = 0)

M(u) = 3 by BR(u) = ygtg t € [0,1] (4.1q)
¢=0 z(1

with the Bernstein polynomials B7(u} of degree n and the control
points
b; = (0, aiz,ai3)" (4.1b)

Whilst rotating around the z-axis a point of (4.1a) with the ordinate
y(t) describes the half circle (in the plane z = 0) [9]

1 ( 1
Rlv)=1 0 | Bi(v)+ { y(t) | Bj(v)+}| O |Biv) (4.2)
y(1) 0 -y(t)

Combining (4.1) and (4.2) leads to the parametric representation of a
surface of revolution as a rational tensor product surface

X(u,0) = 33 by B {u) B2 (v) (4.3)

1=0 ;=0
with
1 0 1
th — 0 :bt'l — 12 ) b:? — 0 y
a;o 0 —a;2

a3 0 a3
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where b;, denotes 2 Bézier point at infinity (only the direction {a,,, 0,0)
1s active) [9].

First, we will approximate a given Bézier surface of revolution by a set
of cones (see (8]):

For this purpose we need a linear approximation of the meridian. This
1s obtained by moving the end point () of a line segment on the offset
curves of the given meridian with a given error tolerance =+¢ as offset,
until one of the interior points of the line segment has the maximal dis-
tance £, ifrom the meridian (see Figure 8). The set of line segments can
be interpreted as a linear B-Spline curve, thus the representation of the
corresponding surface of revolution can be analogously to (4.3). Geomet-
rically speaking the surface consists of a set of cones.

The distances of the interior points of the line segments to the given
meridian are determined by a local Newton method used also in reparame-

trisation of approximation curves (see {9]).
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FIGURE 7. Given surface of revolution

We will show the results of our development with help of an example:
given 1s a surface of revolution of a quartic meridian in Bézier representa-
tion with the control points (see Figure 7)

0 0 0 0 0
b[}= ] ,biz D ,bgz ""5 ,b;g: 4 ,b.:;: 1
0 2 4 6 8
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Figure 8 contains the approximation of the meridian of the surface 1n
Figure 7 by linear segments, Figure 9 the corresponding approximating

COILLES,

TN |
FIGURE 8. Approximation of the meridian from the surface in Figure 7

by line—-segments with the given error tolerance 0.1mm. The
offset—~curves are dotted

FIGURE 9. Conical approximation of the surface in Figure 7 (¢ = 0.05)

Table 1 shows the dependency of the number s of segments and the
error tolerance £ for the example in Figure 9.
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€]0.1]0.05]0.02]0.01
s| 41 7 11 17 Ef

Table 1

For wirc electric discharge machining approximations other than only
by developable surfaces are used. Therefore we can spproximate parts
with negative (Gaussian curvature by a hyperboloid of revolution which
is generated by rotating a skew line around the axes of revolution. The
meridian is a hyperbola. Thus, we can approximate a given surface in
the parts with positive Gaussian curvature by cones ard in regions with
dominating negative Gaussian curvature by hyperboloid of revolution.

We use the parametric representation of a hyperboloid of revolution

X(u, zo ) = (rcosu,rsinu,0) + zo(— cot -y sinu, cot 7 cos u. 1),  (4.4)

additionally the hyperboloid must be moved in z-direction by the
translationn vector T = (0,0,mg). We get the meridian of such a hy-
perboloid by intersecting the surface with the plane z = 0 and obtain the
Cartesian equation z = mo + tanyy/y> — r% (hyperbola) by eliminating
the parameters. Analogously to the line segment approximation we move
the two boundary points of the hyvperbola segment on the offset curve of
the meridian with an offset ¢ and minimise with the help of a Newton
iteration for the parameters r,~, mo the error distance between the given
curve and the approximation curve. For the error measurement we use
the dual description of {4.4) {maximal distance between parallel tangents).

Figure 10 contains the meridian of our example and the approxima-

tion with line and hyperbola segments and Figure 11 the approximating
surface.

FIGURE 10. Approximation of the meridian of the surface of revolution
in Figure 7 by line and hyperbolic segment
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FIGURE 11. Approximation of a surface of revolution by cones and a
hyperboloid

5 Conclusion

The proposed algorithms for interpolation and approximation of given
points, lines, planes and surfaces by ruled surfaces are all linear and there

fore very fast. The only problem is finding an appropriate parametrisation.
With inappropriate parametrisations singularities can occur on the inter-
polation and approximation surfaces in the required region of interest.
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