Approximate Envelope Reconstruction
for Moving Solids

U. Schwanecke and L. Kobbelt

Abstract. We present a new approach to approximatively construct
the envelope of a moving solid. It is based on dynamically updating an
octree that approximates the envelope surface. Our approach guarantees
a prescribed error-bound, and is scalable in the sense that it allows to
calculate coarse approximations very fast while better approximations can
be obtained by investing more computation time and memory. Further-
more the algorithm is robust due to the fact that no badly conditioned
surface-surface intersections has to be computed.

§1. Introduction

A solid object undergoing a motion in general creates a volume. The resulting
volume is called a swept volume. Swept volumes play an important role in
NC (numerical controlled) machining, robotics and motion planing, e.g. in
order to avoid collisions of manipulators. Different approaches to construct
the swept volume of a moving solid were developed during the last decades.

One method for representing and analyzing swept volumes is the envelope
method (cf. [13]). The main drawback of this method is that there are no
really efficient algorithms, due to the essential limitation of efficiently solving
the nonlinear envelope equations, and due to the fact that some envelope
surfaces tend to resist accurate calculation by both analytical and numerical
means.

To overcome the deficiencies of envelope theory, the Sweep Differential
Equation (SDE) and Sweep-Envelope Differential Equation (SEDE) method,
respectively, were developed (cf. [11]). It subsumes the method of envelopes
and is inherently global. The success of the SEDE/SDE method for the nu-
merical computation of swept volumes is largely due to the fact that only a
finite set of points (grazing points) need to be calculated at each time step.

All of these analytic methods become extremely complex when the topol-
ogy of the swept volume gets more complicated. Moreover, none of the men-
tioned methods is able to satisfactory handle self intersections of the swept

Mathematical Methods in CAGD: Oslo 2000 1
Tom Lyche and Larry L. Schumaker (eds.), pp. 1-3.

Copyright © 2001 by Vanderbilt University Press, Nashville, TN.

ISBN 0-8265-xxxx-X.

All rights of reproduction in any form reserved.

2 U. Schwanecke and L. Kobbelt

volume boundary that occur for even fairly simple sweeps. This trimming
problem for swept volumes is discussed in detail in [2]. The authors give an
overview of trimming methods, and develop new trimming strategies for local
and global trimming of swept volumes. All of these trimming algorithms con-
sist of computing the candidate set of the boundary of the volume, and in a
second step of a test to determine the trim set.

If computational time does not matter, high quality renderings of quite
general swept volumes can be obtained by using the Raycasting Engine [17].
For generalized cylinders, i.e. objects defined by sweeping a two-dimensional
contour along a three-dimensional trajectory, the computation of the inter-
section points with a ray can be reduced to the problem of intersecting two
two-dimensional curves [6]. A more efficient way of displaying generalized
cylinders is the surface scanning algorithm described in [5], which draws con-
tours generated by plane intersections close enough to cover every pixel to
which the surface is projected, while avoiding drawing to many superfluous
contours. All of these methods only visualize the volume from one specific
viewpoint, and cannot address self intersections in an efficient manner.

For the verification of NC machining, several boundary representation
and CSG (constructive solid geometry) -based methods have been developed
to reconstruct generated objects by moving one object in space. An accurate
boundary representation to represent and manipulate solids based on the ex-
tension of the octree data structure has been suggested in [7]. This approach
can maintain the resulting model, but the processing time per cut, given as
a Boolean operation, increases rapidly with part complexity due to the fact
that all of the object components have to be cut to each other. Because a
part of average complexity requires several thousands and more cuts, the re-
sulting algorithm is too slow for practical use. To overcome this problem, a
faster algorithm generating cross sections of the swept profile using extended
quadtrees has been given in [15]. However, this approach does not reconstruct
the whole object, but only visualizes cross sections, and therefore cannot give
a complete impression of the object. In order to construct a three-dimensional
model, one has to connect the contours in a post-processing step (c.f. [19]).

In this article we present an algorithm for reconstructing a polygonal
approximation of the envelope of a swept solid that automatically generates
the topologically correct solution within a prescribed error tolerance. The
resulting envelope surface is a guaranteed manifold. In our approach we do
not have to pay special attention to the trimming of the swept envelope.
As a consequence, the presented algorithm is highly eligible for NC milling
simulation for example, where typically a lot of self intersections occur due
to the fact that the milling tool usually passes the same surface region many
times.

Instead of calculating an algebraic expression of the swept solid, we de-
termine a subdivision of the space the swept volume lives in and use linear
sweeps between discrete time steps to approximate the target surface. With
the help of an octree based data structure, a polygonization of this surface
can be determined in a very efficient manner. Dynamically updating the oc-

9 y

Approzimate envelope reconstruction 3

tree in each time step, we incrementally construct the whole piecewise linear
approximation of the swept volume.

§2. Functional Representation of Solids

A solid object S can be represented as a closed subset of R® with a defining
function f. Thereby f is a real continuous implicit function of point coordi-
nates, particularly a generalization of a distance field, with

>0 for points p € R inside the solid,
f(p) ¢ =0 for points p € IR? on the solids boundary, (1)
< 0 for points p € R® outside the solid.

Defining functions of complex solids can be created from a finite set of solid
primitives or given defining functions with set-theoretic operations by a CSG-
like scheme. With the help of the theory of R—functions the exact analytical
definitions of set theoretic operations can be expressed (cf. [20,23]). For ex-
ample, if solid Sy is defined as f; > 0 and solid S, as f, > 0, then

Intersection : S3 =8NS, : fs=hNfe=Ffi+fo+/f2+ f2
Union D 83 =51US8 : fa=fiVh=fit+fo—fE+ 13} 2)
Complement : S;=.5; : fza=—f1

Subtraction : S3=91\Ss : f3= fi\fo=fi—fo—/f2+ [}

These R-functions have C! discontinuities only in points where both argu-
ments equal zero, i.e. at intersections of the belonging solid’s surfaces.

Using the concept of defining functions of solids, one can make these
solids move by introducing a fourth variable ¢ representing the time. Thus,
the general defining function of a moving solid is

f(z,y,2,t) 2 0, (3)

where f(z,y,2,t1) and f(z,y, z,t2) only differ by a rigid transformation.
Since the elimination of the parameter ¢ in (3) is quite difficult in general,
one uses a piecewise constant approximation of the moving solid given by

S:=8(t1)US(ty +dt) US(t1 +2dt) U...U S(ts), (4)

where U is the set-theoretic union defined in (2). For dt — 0 we get a more
and more accurate approximation of the swept solid.

In order to achieve a piecewise linear approximation instead of the piece-
wise constant given by (4), one can define the sweep as union of two solid
samples in initial and final positions and an envelope swept by the moving
solid, i.e. the swept object can be described by

f(xayVZ) = f(l',y,z,tl) \4 f(x7y7z7 tz) \ E(m,y,z), (5)

4 U. Schwanecke and L. Kobbelt

@\/9\/%

: plCCCWlSB hnear plCCGWlSC constant

Fig. 1. Piecewise constant or linear approximation respectively.

where E is the envelope, i.e., the object swept during the motion of the gen-
erator (cf. Fig. 1).

The envelope surface is the surface which is tangential to all members
of the family of surfaces. Consider the two members of the family at times ¢
and ¢ + dt. The first one has equation f(z,y,z2,t) = 0, while the second one
has equation f(z,y,z,t+ dt) = 0. Due to the fact that the envelope must
meet both of these surfaces, and thus satisfy both equations, it can be seen by
expanding the latter in terms of dt, and letting dt tend to 0, that the envelope
surface must simultaneously satisfy

af(x7 y7 Z’ t)

f(xay,zat) =0 and ot

= {I.
The implicit form of the envelope surface can be obtained by eliminating ¢
from these two equations. If the surfaces are described by polynomials, the
elimination can be performed automatically using methods of Computer Alge-
bra such as resultants or Grobner bases (cf. [9]). Although these methods are
restricted to rational functions, many other forms can be converted to them.
As an example, we can represent sin(s) and cos(s) as the rational functions
2t/(1+t%) and (1 — %)(1 + t2), with help of the substitution tan(s/2) = ¢.

All of the proposed methods are computationally expensive, needing ex-
ponential or even doubly exponential time in the number of time-steps ¢;.
Moreover, the resulting implicit functions in general have very high degree
which implies hundreds of coefficients.

Moving a rigid solid along the trajectory g(t) : [t1,t2] — IR with the
orientation p(t) : [t1,t3] — IR**? the structure of the defining function f is

f(@,y,2,t) = s(p(t)(z,y,2)" + (1))

In our actual implementation we only consider spheres, thus we can assume
p(t) to be the identity. The error we make by approximating the trajectory
g(t) by the polygon 1() being the piecewise linear interpolation of the points
g(t1),g(t1 +dt),...,g(t2) can be estimated by

— ¢ 6
Jax [lg(t) ~1(0)]2 < B - Jax g (®)ll2, (6)

Approzimate envelope reconstruction b

where lmax = max ||g(t1 +idt) — g(t1 + (¢ -+ 1)dt)||2 is the length of the longest
polygon edge. If the moving solid is a sphere, than the right hand side of
(6) is also an upper bound for the error made by approximating the moving
sphere’s envelope by a collection of cylinders. This is obvious if we take into
account the fact that the tangent to the trajectory g(t) is parallel to 1(t) at the
parameter value {pax where the maximum error occurs. Thus, the envelope
constructed by our approach converges quadratically to the desired envelope.
Calculating only a piecewise constant approximation instead of a linear one,
we increase the error (6) by

4r2 — 2
E(r):r—————-2 2 (7)

where 7 is the radius of the sphere, resulting in linear instead of quadratic
convergence.

§3. Polygonization

One simple way to visualize a solid is to raytrace it directly from its defining
implicit function. This only visualizes the object from one specific render-
ing viewpoint, and needs very high computational resources as we have still
mentioned.

For applications beyond mere visualization, it is useful to approximate the
surface with an ezplicit representation (indirect visualization), such as a set of
triangles or polygons. In fact, any continuous manifold may be approximated
by a triangulation (cf. [25]). This process, called polygonization in general
involves sampling the surface. One standard approach for implicitly defined
surfaces is to compute the intersection of a three-dimensional grid with the
surface in order to determine the location and connectivity of surface points.

Fig. 2. Quadtree and octree-representation of an implicit function respectively.

6 U. Schwanecke and L. Kobbelt

Using the divide-and conquer strategy of binary subdivision is one of the
most efficient ways to generate this three-dimensional grid. It leads to quadtree
and octree data-structures, respectively: A quadtree (octree) is derived by
successively subdividing a plane (space) in both (three) dimensions to form
quadrants (octants). An comprehensive survey of quadtrees, octrees and other
forms of subdivision such as KD-trees and bintrees can be found in [21,22].
When an octree is used to represent an implicit function, each cell may be
inside, outside, or partially inside and outside (also called white, gray and
black respectively) the solid described by the implicit function (cf. Fig. 2).

When building up the octree, we only have to subdivide gray cells (adap-
tive refinement). To test if a given cell in the octree has to be subdivided, we
check the sign of the implicit function at the corners. Different signs at both
ends of an edge indicate that the surface must have an intersection with that
edge.

Unfortunately, there are configurations where parts of the surface lie in
the interior of the cell, yet the implicit function has the same sign at all
corners. Such situations are quite hard to detect in general, since many special
cases have to be checked [7]. However, in the case of adaptive refinement for
isosurface extraction, it is sufficient to find a conservative splitting criterion.
For correct reconstruction, we have to guarantee that a cell is subdivided if
some part of the surface lies in the interior, but we can tolerate wrong decisions
where the cell if subdivided, even if the surface does not intersect the cell.

In the case of a moving solid, we can derive such a conservative criterion
by computing a bounding box or a bounding sphere that encloses the solid.
For such basic primitives, the intersection test with a given cell can be imple-
mented very efficiently (cf. [1]). In oder to reduce the number of erroneous
decisions, we can additionally compute an empty box or empty sphere in the
interior of the moving solid. For the practically relevant geometries, i.e., the
standard shapes of milling tools, the approximation of the moving solid by an
outer bounding box and an inner empty box is sufficiently tight.

Another criterion to subdivide given octants in order to achieve an ap-
proximation of an object is the variation of the target’s distance field over the
parent cell (cf. [10]).

Once the octree representation of the solid is given, one can construct a
polygonal approximation of the solid’s surface by examining the different con-
figurations of the corners of the partially full voxels (border voxels). Therefore,
we use the distance values f(p) evaluated at the voxel corners and stored in
our hash table. Each of the 8 voxel corners can have a negative or nonneg-
ative value, resulting in 256 different corner configurations. These cases can
be handled by a table method (Marching Cubes) proposed in [14,18], or an
algorithmic method described in [3]. Because our implicit defining functions
are continuous, they always intersect an edge of a voxel connecting differently
signed vertices. A coarse approximation of the surface samples are the mid-
points of these edges. In order to get a better approximation of the desired
object, we either approximate the exact intersection using bisection or New-
ton iteration, or linear interpolate with respect to the values assigned to the

Approzimate envelope reconstruction 7

f(p)<0 f(p)<0

(p)<0)

f(p)<0

N
NEEN

Fig. 3. Left: The algorithmic polygonization method: The surface vertices are
ordered by walking from one surface vertex to the next, around a face of
a given voxel in clockwise order. When arriving at a new vertex, the face
across the vertex’s edge from the current face becomes the new current
face. Middle and right: Surface obtained by connecting midpoints or
linear interpolation respectively.

corners of the voxels. Figure 3 illustrates the algorithmic approach, and shows
two resulting triangular meshes, with and without linear interpolation.

§4. Dynamic Octree Manipulation

In this section we describe our new approach to approximately reconstruct the
envelope of a moving solid. In particular our goal is to construct a polygonal
approximation of the target surface given by (4) and (5).

We denote the volume given by the linear interpolation of S(t; + idt)
and S(t; + (¢ + 1)dt) by L;. Because it is computationally too expensive to
determine the implicit function given by (4) and (5), we just consider the
volume L;1; with respect to that given by Lo U ...U L;. In this incremental
reconstruction process we choose a bounding box (= root cell of the octree)
that is large enough to contain the whole swept volume given by (4), and start
computing the octree approximating L.

In order to construct the octree approximating that part of the envelope
that is generated by LoULq, we just traverse the initial octree of Ly and check
in what manner it is changed by L;. Thereby, we do not have to worry about
branches that are marked inside because they can never change status. We
only have to update leaves that are marked as border or outside leaves. This
makes our approach quite fast.

If a branch of the octree is marked as outside, we have to construct a new
suboctree corresponding to L;. If a branch is marked as border, we have to
check whether this branch is inside L; or not. If it is not, we go on with the
traversal of the initial octree with respect to L;. Thereby all suboctrees of
the initial octree now being inside L; can be removed to reduce computation
time and memory (cf. Fig. 4).

In order to get the correct results, we also have to update the values of
the defining functions evaluated at the voxel corners. Due to the fact that a

8 U. Schwanecke and L. Kobbelt

Fig. 4. Dynamically updating a quadtree in order to approximate the envelope
of a circle moving along a polygon.

region once marked as inside alway stays inside, we have to compute the new
values and store the higher one of an old and a new value in our hash table.
If we repeat this procedure until we reach L;,_4, we have built an oc-
tree representing the whole moving solid given by (4) and (5) up to an error
tolerance determined by the size of the voxels or the maximum depth of the
octree respectively. Thereby the time step d¢ has to be chosen sufficiently
small, so that the error made by our discretization (4) is smaller than the size
of the voxels. Figure 4 illustrates the dynamically growing octree, quadtree
respectively. Notice that voxels of regions that have been subdivided to the
maximum refinement level can be combined and deleted during this process.

Fig. 5. Some example sweeps. Notice the alias effect along intersections.

Figure 5 shows some resulting sweeps. On the left hand side a sphere of
radius 7 = 2 is moving along the knot curve defined by

10 cos(t) + cos(3t) + cos(2t) + cos(4t)
k(t) = 6 sin(t) + 10sin(3t) , te]o,2n].
4sin(3t) sin(2¢) + 4sin(4t) — 2sin(6t)

With dt = T%% and edge-length of the smallest voxels equals 0.02 (=error
tolerance). The resulting polygonal approximation consists of approximately
376000 triangles, and it took about 50sec to compute it. On the right hand
side a sphere of radius 7 = 5 is moving along 13 points building a polygon
describing the letters MPI. The edge-length of the smallest voxels has also

Approzimate envelope reconstruction 9

been set to 0.02 resulting in a triangular mesh with about 500000 triangles. It
took about 20sec to calculate this mesh which is faster than the first example
because fewer time steps had to be computed.

§5. Post Processing

The approach described in the previous section guarantees a prescribed error-
bound. The error made by our reconstruction process is at most the length of
the edges of the voxels. But due to the discretization we made, and due to the
fact that we only choose one possible triangulation of the calculated points,
our approach, like every discrete approach, produces alias effects appearing at
sharp features (cf. Fig. 5).

Fig. 6. Flipping an edge according to the deviation of normals.

In order to reduce these effects one can improve the triangulation by
flipping edges of the mesh representing the solids envelope. Therefore, one
has to define a global curvature functional as a criterion for the mesh quality.
Such a functional may be the deviation of the normals of adjacent triangles
or the discrete Gaussian curvature. Several methods to calculate the discrete
Gaussian curvature of a polygonal net exist. A fast and numerically stable
method to estimate not only the Gaussian curvature but also the tensor of
curvature of a polygonal net can be found in [24]. A comparison of the errors
of several approximations to the surface normal and the Gaussian curvature
can be found in [16].

In our implementation we chose a functional based on the deviation of
the normals of adjacent triangles which is illustrated in Fig. 6. We exam-
ine all triangles of our net and flip an edge bd shared by two adjacent
triangles into the edge ac if min(A\ min(A4)) > min(B\ min(B)) with A =
{n{ns,nins,nTng,nJne} and B = {nTn;,nTns, ning,ning}.

Figure 7 shows a surface before and after processing the edge-flipping
step. It can be seen that the quality of the mesh has been improved drastically.
Unfortunately, as one can also see, the described edge-flipping process does
not remove all of the occurring alias effects but at least most of them. This is
due to the fact that our greedy approach can become stuck at local minima
of the functional measuring the mesh quality. To overcome this problem, one
has to choose more sophisticated techniques, e.g., considering the mesh quality

10 U. Schwanecke and L. Kobbelt

Fig. 7. A Swept surface before and after flipping the edges.

not only after performing one edge-flip, but two ore even more, which will be
future work.

In Figure 8 an example from an industrial application is shown. The
pictured surface resulted from moving a ball cutter of diameter r = 8mm along
a path given by 3770 points. The edge-length of the voxels approximating the
surface is 0.1mm. The resulting surface consists of about 1.2 million triangles,
and it took about 10 minutes to calculate.

Fig. 8. A NC machining simulation example.

§6. Conclusion and Future Work

We presented a technique to construct a polygonal approximation of the en-
velope of a moving solid which is based on dynamically updating an octree
approximating the envelope surface. Since we use linear sweeps between dis-
crete time steps, our approach is very fast. It can reconstruct the envelope
of a moving solid up to a prescribed error bound, while it is scalable in the
sense that tolerating a larger approximation error speed up the calculation so
that rough approximations even could be obtained in real time. Because no
surface-surface intersections have to be computed explicitly, the algorithm is
robust and highly eligible for applications like NC milling simulation, where
typically a lot of these intersections turn up.

Finally, we showed that flipping the edges of a mesh can improve the
mesh-quality drastically. Up to now we only have implemented a simple greedy

Approzimate envelope reconstruction 11

edge-flipping procedure. Using a more sophisticated optimization technique
could improve the mesh-quality even more.

Our actual implementation only allows moving spheres, because there
exist very fast and simple algorithms to check whether a sphere or ellipsoid
intersects a given box or not. Our algorithm could be generalized to arbitrary
solids, as long as we can evaluate the distance function in an efficient manner
(e.g. for polygonal meshes cf.[12]). However, already the envelope swept by
an arbitrary solid moving along a straight line can become quite complex
which has been shown in Section 2. At this point, the piecewise constant
approximation might lead to the more efficient reconstruction algorithm.

Acknowledgments. This research was partly supported by Siemens AG
Miinchen.

References

1. Arvo, J., A simple method for box-sphere intersection testing, in Graphics
Gems, A. S. Glassner (ed.), Academic Press, New York, 1990, 335-339.

2. Blackmore, D., R. Samulyak and M. C. Leu, Trimming swept volumes,
Computer-Aided Design 31 (1999), 215-223.

3. Bloomenthal, J., Polygonization of implicit surfaces, Computer Aided
Geom. Design 5 (1988), 341-355.

4. Bloomenthal, J., C. Bajaj, J. Blinn, M. Cani-Gascuel, B. Wyvill and
G. Wyvill, Introduction to Implicit Surfaces, Morgan-Kaufmann, San
Francisco, 1997.

9. Bronsvoort, W., A surface scanning algorithm for displaying generalized
cylinders, The Visual Computer 8 (3) (1992), 162-170.

6. Bronsvoort, W. and F. Klok, Ray Tracing generalized cylinders, ACM
Trans. on Graphics 4 (4) (1985), 291-303.

7. Brunet, P. and I. Navazo, Solid representation and operation using ex-
tended octrees, ACM Trans. on Graphics 9 (2) (1990), 170-197.

8. Carmo do, M., Differential Geometry of Curves and Surfaces, Prentice
Hall, 1976.

9. Davenport, J. H., Y. Siret and F. Tournier, Computer Algebra: Systems
and Algorithms for Algebraic Computation, Academic Press, 1993.

10. Frisken, S. F., R. N. Perry, A. P. Rockwood and T. R. Jones, Adaptively
sampled distance fields: a general representation of shape for computer
graphics, Proc. Siggraph '00, ACM, 2000.

11. Gouping, W., S. Jiaguang and H. Xuanji, The sweep-envelope differential
equation algorithm for general deformed swept volumes, Comput. Aided
Geom. Design 17 (2000), 399-418.

12. Guéziec, A., “Meshsweeper”: Fast closest point on a polygonal mesh and
applications, IEEE Trans. on Visualization and Computer Graphics, to
appear.

12

13.

14.

15.

16.

17.

18.

19

20.

21.
22.

23.

24.

25.

U. Schwanecke and L. Kobbelt

HU, Z. and Z. Ling, Swept volumes generated by the natural quadric
surfaces, Computer and Graphics 20 (2) (1996), 263-274.

Lorensen, W. E. and H. E. Cline, Marching cubes: a high resolution 3D
surface construction algorithm, Computer Graphics 21 (3) (1987), 163
169.

Liu, C., D. M. Esterling, J. Fontdecaba and E. Mosel, Dimensional ver-
ification of NC Machining profiles using extended quadtrees, Computer-
Aided Design 28 (11) (1996), 845-852.

Meek, D. S. and D. J. Walton, On surface normal and Gaussian curva-
ture approximations given data sampled from a smooth surface, Comput.
Aided Geom. Design 17 (2000), 521-543.

Menon, J. P. and D. M. Robinson, Advanced NC verification via massively
parallel raycasting, ASME DE Manufacturing Review 6 (1993), 141-154.

Montani, C., R. Scateni and R. Scopigno, A modified look-up table for
implicit disambiguation of marching cubes, The Visual Computer (10)
(1994), 353-355.

Oliva, J-M., M. Perrin and S. Coquillart, 3D Reconstruction of complex
polyhedral shapes from contours using a simplified generalized Voronoi
diagram, EUROGRAPHICS 96 (1996), 397-408.

Rvachev, V. L., Methods of Logic Algebra in Mathematical Physics, Nau-
kova Dumka Publishers, Kiev, 1974.

Samet, H., Applications of Spatial Data Structures, Addison-Wes., 1990.
Samet, H., Design and Analysis of Spatial Data Structures, Addison-
Wesley, 1990.

Shapiro, V., Real functions for representation of rigid solid, Comput.
Aided Geom. Design 11 (1994), 153-175.

Taubin, G., Estimating the tensor of curvature of a surface from a poly-
hedral approximation, Proc. ICCV ’95, 1995, 902-907.

Whitney, H., Elementary structure of real algebraic varieties, Annals of
Mathematics 66 (1957), 545—556.

Ulrich Schwanecke, Leif Kobbelt
Max-Planck-Institute for Computer Sciences
Stuhlsatzenhausenweg 85

66123 Saarbriicken, GERMANY
{schwanecke,kobbelt }@mpi-sb.mpg.de

