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Abstract—In this paper, we present a new variant of the well-
known RANdom SAmple Consensus (RANSAC) algorithm for
robust estimation of model parameters. The idea of our method
is based on a kind of volatile memory which is similar to the
pheromone evaporation in the ant colony optimization algo-
rithm. Therefore, we call our improved RANSAC like algorithm
ANTSAC. We describe our new approach and the influence of
its relevant parameters to the achieved performance in detail.
ANTSAC is computationally efficient and convincingly easy to
implement. It turns out that ANTSAC significantly outperforms
RANSAC regarding the number of inliers after a given number
of iterations. Further, we show that the advantage of ANTSAC
increases with the complexity of the problem, i.e., with the
number of model parameters, as well as with the relative number
of outliers. ANTSAC is entirely generic, such that no further
domain knowledge is required, as it is for many other RANSAC
extensions. Nevertheless, we show that it is competitive to state-
of-the-art methods even in domain specific scenarios.

I. INTRODUCTION

Fitting a mathematical model to measured data is at the
base of many applications in automated image analysis and
robotics. In practice, the measurements are usually inaccurate
and even erroneous. In computer vision tasks, for instance,
data often come from error-prone feature detectors. Therefore
algorithms fitting a model based on measured data must con-
sider measuring errors. To be more precisely, such algorithms
should separate accurate data (inliers) from less accurate data
(outliers).

A common method for robust calculation of the model
parameters is the non-deterministic iterative RANdom Sample
Consensus (RANSAC) algorithm [1]. In each iteration of this
algorithm a minimum set of points is selected, which is needed
to fit the model. Based on this selection the model parameters
are determined and subsequently all points are classified as
inliers or outliers according to their distance to the estimated
model. After a predefined number of iterations the model, that
returned the highest number of inliers, is selected.

One major problem of RANSAC is that the number of iter-
ations required to obtain an appropriate model explodes if the
relative number of outliers or the number of model parameters
increases. This fact is crucial for real-time applications, even
more if instantiating the model is computationally expensive.
If there is further knowledge of the model instance e.g. size,
orientation etc., samples might be identified as outlier a priori.
A couple of RANSAC modifications aim at gaining knowledge
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Fig. 1. Inlier emergence in a typical ellipse experiment during 10 iterations of
ANTSAC. The intensity (darkness) of a point represents its pheromone-level.

by analyzing the sample set in a problem specific way or
through density estimations. But such approaches are not
always possible or even useful, especially if their advantages
do not legitimate their computational overhead, not to mention
the additional effort to implement and integrate them.

In this paper we present a generic improved RANSAC
like algorithm that is based on collecting knowledge about
the model instance during the iteration process itself, by
memorizing, which samples have been proven to produce more
inliers without any further data analysis. In order to achieve
this we use some kind of volatile memory, which works
similar to the pheromone evaporation process in the ant colony
optimization algorithm [2]. We therefore call our approach
ANTSAC. Figure 1 illustrates exemplary the emergence of
an ellipse in the pheromone memory during 10 iterations of
ANTSAC.

Based on experiments of notable problems in computer
vision tasks we show that ANTSAC dramatically outperforms
RANSAC both in terms of speed (less number of iterations)
and robustness (stable outlier estimation even if the inliers
are noisy). Thereby the superiority of ANTSAC over the
standard RANSAC algorithm grows with the complexity of
the model to be determined and with an increasing relative
number of outliers. Moreover, the ANTSAC sampling strategy
can compete with other state-of-the-art methods, e.g. PROSAC
or LO-RANSAC in real-world problem scenarios in that even
less runtime is required to produce a similar number of inlier
without performing additional domain specific computations.



II. RANDOM SAMPLE CONSENSUS

In the following, we give a short recapitulation of the
original RANSAC algorithm [1]. Thereby the mathematical
notation that will be used in the remaining sections is in-
troduced and some important extensions of RANSAC are
discussed shortly.

Let S ⊆ S be a finite set of samples or data points, where
S denotes the sample space. As model space we define the
set M := {M | M ∈ P(S) ∧ |M | = k} of all possible model
instances or hypotheses M . Thereby k ≥ 1 denotes the number
of samples, which are at least required to instantiate a model.
We assume that S contains a subset S∗in containing more than
k samples that fit a model instance within a predescribed
accuracy. Now, let d : M × S → R be a function, which
measures the distance between model instances and samples.
With a given problem specific threshold θ ∈ R+ we define the
set of inliers or the consensus set as

Sin(M) := {s | s ∈ S ∧ |d(M, s)| ≤ θ}. (1)

Thereby θ defines a boundary, which distinguishes sharply be-
tween correct samples (inliers) and incorrect samples (outliers).

The aim of RANSAC is to find the optimal model instance
M∗, that maximizes the consensus set and therefore is the
best representative of the given sample set S. This is achieved
by iteratively picking model instances M t and comparing the
number of inliers i.e. |Sin(M t)|. Thereby each model instance
is chosen with the same probability. In the following, we
denote s ∼ U(S) for choosing a sample s from the uniformly
distributed sample space S. The model instance Mmax that
generates the set Smaxin := Sin(Mmax) with the maximum
number of inliers, i.e. ∀t : |Smaxin | ≥ |Sin(M t)| is the instance
we are searching for. Note that the “goodness” of a model
instance depends on θ and thus a “best-fitting” instance must
not necessarily be unique. It only holds M∗ ≡θ Mmax, which
means that the searched optimal model M∗ is covered by the
consensus set of Mmax under the threshold θ. In conclusion,
the complete RANSAC procedure is depicted in Algorithm 1.

Algorithm 1 The original RANSAC algorithm
1: Smaxin := { }
2: for t := 1 to T do
3: select st1, . . . , s

t
k ∼ U(S)

4: M t := build model(st1, . . . , s
t
k)

5: determine Stin using eq. (1)
6: if |Stin| > |Smaxin | then
7: Smaxin := Stin
8: Mmax := M t

9: end if
10: end for
11: return (Smaxin ,Mmax)

Meanwhile the RANSAC algorithm has been modified in
many different ways. There is an almost overwhelming amount
of publications available concerning the improvement of the
RANSAC algorithm and it is out of the scope of this work to
mention all of them. As proposed in [3], the various variants
of RANSAC can be divided into three categories yielding one
of the objectives accuracy, speed, and robustness.

Acccuracy is e.g. addressed by the maximum a posteriori
estimator MAPSAC [4] which is based on the maximum like-
lihood estimation sample consensus (MLESAC) proposed by
Torr and Zisserman [5]. Thereby MLESAC is quite similar to
MSAC (m-estimator sample consensus) (see also [5]) but could
be shown to provide a slightly lower estimation error. Other
approaches addressing accuracy are the robust projection based
M-estimator by [6], the LO-RANSAC algorithm [7] which
adds a generalized model optimization step to the original
RANSAC algorithm, or QDEGSAC (RANSAC algorithm for
(quasi-)degenerate data) presented by Frahm and Pollefeys [8].

Speed is e.g. addressed by the usage of priors in guided-
MLESAC [9], by restricting the set of data from which
samples are drawn in PROSAC [10], by selecting adjacent data
points as samples in NAPSAC [11], by combining RANSAC
with evolutionary optimization techniques in GASAC [12], by
various randomized RANSAC variants (e.g. [13], [14]), or by a
preemptive scoring mechanism [15]. Other recent approaches
addressing fastness are e.g. the optimal randomized RANSAC
proposed in [16], SCRAMSAC [17], Adaptive Sample Consen-
sus [18], or deterministic sample consensus (DESAC) [19].

Robustness is e.g. addressed by using random minimum
subsets to find inliers (FH-MAPSAC) [20], by estimating
the outliers share as well as the inliers noise level (AM-
LESAC) [21], or by expectation maximization (u-MLESAC)
[22]. Conclusively, there are many RANSAC extensions that
provide significant enhancements in terms of either robustness,
speed or quality. Many other methods were introduced, e.g.
SimSAC and BaySAC [23] having pros and cons. BaySAC
halve the number of iterations compared to RANSAC but
require a prior estimation of inlier probabilities, while SimSAC
is computational expensive. Another example is the USAC
algorithm [24], which is not an entirely new algorithm but
rather a combination of various existing methods, such as
PROSAC, LO-RANSAC and others.

Nonetheless, the probably most convincing aspect of the
standard RANSAC method, and arguably the reason why it is
still commonly used, is its simplicity. Unfortunately, up to now
there exists no method that is similarly simple but also provides
good improvements by keeping the computational overhead
small, such that it would be attractive for a broad range of
practical applications. In the remainder of this paper we outline
an approach that will fulfill all of these requirements.

III. ANTSAC APPROACH

As mentioned above our approach is based on a mechanism
that memorizes the samples that have been approved to fit
the searched model instance M∗. Thereby, to fit the model
instance means that a sample is contained in the consensus
set. Without any further knowledge of the model instance or
sample distribution, the most intuitive way to measure the
probation of a sample is to memorize whenever it is part
of a consensus set or not over the whole iteration process.
Under the assumptions from the previous section the result
is, that samples, which are part of the optimal model M∗,
are more often determined as inliers than samples which are
indeed outliers. For shorthand, we will refer to this effect as
tendential inlier probation (TIP).



In Section II we mentioned that the decision of a sample
to be an inlier or not is sharp and depends on the threshold θ.
Even if θ is chosen carefully this might cut off information
which could be used additionally for the TIP in a similar
manner as the binary information to be an inlier or not.

As the probability of finding M∗ using the RANSAC
algorithm rises with the number of iterations, the TIP be-
comes more obvious, but is already noticeable after just a
few iterations. To exploit this information during the iterative
process we need an appropriate memory to store the TIP
information for each sample. Additionally, we also have to
modify the selection process in such a way that the TIP is
respected profitably. In our approach both requirements are
solved through techniques based on the Ant Colony Optimiza-
tion (ACO) algorithm [2].

The ACO meta-heuristic, inspired by the pheromone based
organization of foraging ants, was successfully applied to
many combinatorial optimization tasks as well as numerical
optimization problems. Thereby a pheromone matrix is used
that stores a pheromone level for each particular solution.
The pheromone levels vaporize over time and are refreshed
iteratively by artificial ants proportional to the fitness of each
superordinate entire solution. Which particular solution is
chosen locally by an ant depends on a probability distribution
based on the current pheromone matrix as well as some addi-
tional local heuristic information. The higher the pheromone
level of a possible particular solution is, the more likely it is
getting picked.

In order to use the aspects of ACO to utilize the effect of
emergence for outlier estimation we introduce the pheromone
memory as a function τ : S → R that assigns a pheromone
value to each sample of S. Thereby the convention is that the
higher the pheromone level of a specific sample is, the higher
its importance is related to the other samples. Before the first
iteration, this memory is initialized for all samples through

τ1(s) :=
1

|S|
. (2)

After each iteration of the ANTSAC algorithm the pheromone
memory τ is updated by

τ t+1(s) := ρτ t(s) + ∆τ t(s). (3)

The rate ρ ∈ [0, 1] defines the degree of the pheromone
level evaporation. If ρ is chosen too small then information
is “washed” out of the memory very fast, whereby “good”
information may get lost. Contrarily, if ρ is chosen too large,
the process of emergence might be disrupted by too much
“bad” information accumulated in the memory. Evaporation
rates around 0.9 are proposed to be appropriate (see e.g.
[25]). The offset ∆τ t(s) gives the pheromone refreshment after
iteration t. We propose the refreshment to be

∆τ t(s) :=
|Sint|

|S|+ 1

t

∑
t′≤t

|St
′

in|
exp

(
−1

2

[
d(M t, s)

θ

]2)
(4)

The first part of (4) is the basis rewarding expressing the
goodness of the current model instance. The rewarding is
higher the greater the number of inliers in the current iteration

is. Additionally, the mean number of inliers achieved so far is
used to damp the rewarding if there is no more improvement.
The second part of equation (4) scales the rewarding related
to the distance of each sample to the current model instance.
Thereby, the scale is computed with a gaussian-like function,
where the maximum is at 0 and the infliction point is at θ.

Now, the current pheromone level for each sample can be
expressed as the probability

P (s; t) :=
τ t(s)α∑

s′∈S
τ t(s′)α

, (5)

where α ∈ R+, usually selected in the interval [0.1, 2.0],
adjusts the relative importance of each sample. The higher
α is the more high pheromone values are strengthened and
low pheromone values are attenuated. With D(S, t), we further
denote the probability distribution over S at iteration t holding
(5) for each sample of S. Thus s ∼ D(S, t) means that
a sample s is selected from S corresponding to that given
probability distribution. Compared to common ACO imple-
mentations, we use no objective heuristic in equation (5) such
that the probability of a sample to be picked depends only
on its relative pheromone level. Introducing a domain specific
heuristic might be very useful, but has not been tested so far.

Combining a pheromone memory and probabilistic picking,
the ANTSAC algorithm no longer is a pure Monte Carlo
method like classic RANSAC, but rather a meta-heuristic
search strategy, where the TIP gives some kind of search direc-
tion. Thereby, our method provides the real inlier candidates
to emerge from the set samples over time (see Figure 1). This
phenomenon is discussed and illustrated in Section V. The
complete ANTSAC procedure is summarized in Algorithm 2.

Algorithm 2 The ANTSAC algorithm
1: Smaxin := { }
2: for all s ∈ S do
3: τ1(s) := 1

|S|
4: end for
5: for t := 1 to T do
6: select st1, . . . , s

t
k ∼ D(S, t)

7: M t := build model(st1, . . . , s
t
k)

8: determine Stin using Eq. (1)
9: if |Stin| > |Smaxin | then

10: Smaxin := Stin
11: Mmax := M t

12: end if
13: for all s ∈ S do
14: determine ∆τ t(s) using Eq. (4)
15: τ t+1(s) := ρτ t(s) + ∆τ t(s)
16: end for
17: end for
18: return (Smaxin ,Mmax);

IV. EXPERIMENTS

The aim of our experiments is mainly twofold. First, we
analyze the ANTSAC algorithm and its improvement com-
pared to vanilla RANSAC on three different artificial problems,
namely, line fitting (2 data points/model, referred as LINE),



ellipse fitting (5 data points/model, referred as ELLIPSE) and
fundamental matrix estimation (8 data points/model, referred
as FUNDAMENTAL). Here, the task is to study the behavior
of ANTSAC and the influence of its parameters on different
complex problem scenarios. Thereby, each particular problem
is performed with four different values for q (0.5, 0.4, 0.3 and
0.2) that refers to the relative number of inliers.

Second, we compared ANTSAC with various state-of-
the-art methods using the USAC framework presented in
[24] on real-world data for homography estimation (4 data
points/model, referred as HOMOGRAPHY) and essential ma-
trix estimation (5 data points/model, referred as ESSENTIAL).
Since ANTSAC is, strikly speaking, only a sampling strategy
without an additional optimization step or a special stopping
criterion, its nearest competitor is PROSAC [10]. However,
we compared it with LO-RANSAC [7] and USAC-1.0 [24] as
well. In order to get meaningful results all these experiments
was repeated 500 times.

The general performance analysis of ANTSAC bases on
the following terms. Let the average performance curve f for
X repetitions be defined by

fA(t) :=
1

X

X∑
x=1

|Stin,x|. (6)

This curve gives the average number of inliers produced by a
RANSAC-like algorithm A after t iterations. The improvement
curve gives the relative performance of an ANTSAC instance
compared to vanilla RANSAC and is computed with

gANTSAC(α,ρ)(t) :=
fANTSAC(α,ρ)(t)

fRANSAC(t)
. (7)

Thus, gANTSAC(α,ρ)(t) > 1 means that the given ANTSAC
instance produces more inliers than RANSAC after t iterations.
In this context the term maximum improvement refers to
maxt

{
gANTSAC(α,ρ)(t)

}
.

To evaluate which α, ρ combinations work best, we process
as follows. For each particular problem and the four different
values of q various experiments were performed covering
a sufficiently dense map of parameter configurations over
α ∈ [0.1, 2.3] and ρ ∈ [0.1, 1.0]. Then, for each such parameter
configuration the improvement curve over 500 repeats was
computed. With these improvement curves an improvement
map G(α, ρ) was set up, which contains the improvements
either after a fixed number of iterations or the maximal
improvements. Finally, we determined the relative goodness
of a parameter pair through

Ĝ(α, ρ) :=

G(α, ρ)− min
∀α′,ρ′

G(α′, ρ′)

max
∀α′,ρ′

G(α′, ρ′)− min
∀α′,ρ′

G(α′, ρ′)
. (8)

In [24] for PROSAC sampling the samples are given in
a priory sorted order according to their putative quality. We
found that a good way to acquire this information in ANTSAC
is to scale the initial pheromone values of the ordered samples
using a function that declines like the density function of a
normal distribution. Therefore we propose

τ1(s) :=
1

|S|

[
λ+ (1− λ) exp

(
−1

2

[
π(s)

σ|S|

]2)]
. (9)

Here λ ∈ [0, 1] is a minimal value to which the scaling term
converges (we fixed λ to |S|−1), π : S → {0, . . . , |S| − 1}
models a permutation of S representing the putative quality or-
dering and σ ∈ [0, 1] defines the inflection point of the scaling
term (we fixed σ to 0.1). To distinguish results for ANTSAC
with or without a priory pheromone map initialization we refer
the latter here as pk-ANTSAC (prior knowledge).

V. RESULTS AND DISCUSSION

Figure 2 visualizes the relative goodness for various param-
eter configurations for our three toy problems. More precisely,
each plot shows the average relative goodness as computed in
equation (8) over all four q’s. It can be observed that for each
particular problem there is an unique area on the α, ρ-map for
which ANTSAC works best. This area is already noticeable
even in the early phase (upper row of Figure 2). When consid-
ering the goodness for the maximal improvement (lower row of
Figure 2) these areas come out clearly and appear to be smooth
and uni-modal. For LINE the optimum is approximately at
α = 1.6, ρ = 0.85, for ELLIPSE at α = 1.3, ρ = 0.95 and
for FUNDAMENTAL at α = 1.3, ρ = 0.75. An interesting
observation is that for FUNDAMENTAL the range of good
working parameters is significantly broader than for ELLIPSE
but also for LINE. However, parameter pairs at roughly about
α = 1.2−1.4, ρ = 0.9 seems to work universally.

The performance achieved in our experiments is depicted
in Figure 3. Already in the early phase, after just 5 iterations
for LINE, 10 for ELLIPSE and 15 for FUNDAMENTAL
there is on average a considerable improvement for all three
problems, except the hard experiments with a low inlier
relation. But after approximately 10 iterations for LINE, 20
for ELLIPSE and 30 for FUNDAMENTAL, ANTSAC can
unfold its potential as a meta-heuristic search strategy. Thus,
the maximal improvements rise up to 16−25 % for LINE,
35−39 % for ELLIPSE and 68−160 %. It can be seen that, e.g.,
for the FUNDAMENTAL experiment, the mean inlier number
achieved by ANTSAC within 50 iterations is not achieved by
RANSAC even after 10, 000 iterations. This saves computing
hypotheses of several magnitudes and is produced without any
domain specific optimization or prior knowledge. Furthermore,
the diagrams in Figure 3 offer the probably most important
aspect of the behavior of our algorithm: The more difficult the
problem becomes the bigger also becomes the performance
gain of ANTSAC.

The results regarding the competitiveness of ANTSAC are
given in Table I and II. For HOMOGRAPHY it can be seen,
that within 100 iterations ANTSAC is able to produce a similar
number of inliers than LO-RANSAC and USAC-1.0 using
slightly less run-time. However, it significantly outperforms
PROSAC sampling. For ESSENTIAL pk-ANTSAC outper-
forms PROSAC already in the early phase in more than 8
times less run-time. Within 100 iterations, the maximum inlier
number of LO-RANSAC and USAC is not achieved, but the
result of ANTSAC as well as pk-ANTSAC is way better than
PROSAC. Conclusively, the important outcome here is that
ANTSAC can compete on real-world problems with domain
specific optimized algorithms and performs even better than
the state-of-the-art sampling strategy PROSAC that utilizes
prior knowledge. It seems possible that ANTSAC may inspire
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Fig. 2. Visualization of the influence of the two major ANTSAC parameters α and ρ to the performance of ANTSAC for line and ellipse fitting as well
as fundamental matrix estimation. The upper row shows the achieved performance in a very early phase, while the lower row shows the maximum achieved
performance. The higher the value at a certain coordinate is, the better ANTSAC performs with the corresponding parameter pair.
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Fig. 3. The improvement of ANTSAC compared to vanilla RANSAC regarding the achieved number of inliers after a certain number of iterations for different
inlier relations. The left diagram shows the improvement in the early phase of the algorithm, the center diagram depicts the maximal achieved improvement and
the right diagram shows the improvement after 500 iterations for LINE and after 1000 iterations for ELLIPSE and FUND.

TABLE I. ANTSAC COMPARISON FOR HOMOGRAPHY

Hypo. limit Algorithm Hypo. used Inliers Runtime

10

PROSAC 9 839.93 ± 221.80 42 [ms]
LO-RANSAC 10 989.74 ± 361.30 31 [ms]

USAC-1.0 6 1 131.85 ± 135.01 80 [ms]
ANTSAC 10 488.12 ± 325.33 5 [ms]

pk-ANTSAC 10 727.15 ± 226.73 5 [ms]

100

PROSAC 16 978.25 ± 114.45 43 [ms]
LO-RANSAC 100 1 130.45 ± 52.09 50 [ms]

USAC-1.0 6 1 147.55 ± 2.73 81 [ms]
ANTSAC 100 1 049.41 ± 55.72 47 [ms]

pk-ANTSAC 100 1 054.19 ± 52.38 47 [ms]

synergistic in combination with other techniques, e.g., LO-
RANSAC. Last, it should be noted that the shrinking gap
between ANTSAC and pk-ANTSAC over time indicates the
generic knowledge acquisition ability of ANTSAC sampling.

TABLE II. ANTSAC COMPARISON FOR ESSENTIAL

Hypo. limit Algorithm Hypo. used Inliers Runtime

10

PROSAC 10 361.86 ± 49.54 41 [ms]
LO-RANSAC 10 560.50 ± 150.26 29 [ms]

USAC-1.0 10 628.94 ± 248.28 73 [ms]
ANTSAC 10 306.43 ± 138.06 5 [ms]

pk-ANTSAC 10 383.98 ± 114.78 5 [ms]

100

PROSAC 33 458.10 ± 80.12 45 [ms]
LO-RANSAC 100 661.05 ± 87.95 55 [ms]

USAC-1.0 65 722.86 ± 52.80 81 [ms]
ANTSAC 100 552.47 ± 60.16 47 [ms]

pk-ANTSAC 100 568.76 ± 62.18 48 [ms]

VI. CONCLUSION AND FUTURE WORK

We have presented a novel approach for model fitting
combining the well-known RANSAC method with principles
of ant colony algorithms. The resulting ANTSAC algorithm is



equipped with a pheromone memory, which gains information
from the process of iteratively picking model instances, while
the picking itself becomes more and more intelligent over
time. Thereby, ANTSAC provides the real inlier candidates
to emerge from the set of samples.

We could show that ANTSAC dramatically outperforms
classical RANSAC both in terms of smaller number of itera-
tions needed and also in robustness. For instance, in the case of
fundamental matrix estimation ANTSAC produces up to 160 %
more inliers than RANSAC. Further, to gain the same number
of inliers ANTSAC needs only a fractional part of iterations.
Actually, it turned out that ANTSAC often finds optimal model
instances within 50 iterations that RANSAC does not find
even after more than 10 000 iterations. It also found that the
improvement of ANTSAC grows with the difficulty of the
problem. This is interesting because in the context of a more
complex problem on one hand instantiating the model and de-
termining distances becomes computationally more expensive
and on the other hand the number of recommended RANSAC-
iterations nearly explodes.

While other RANSAC variants require domain specific
knowledge of a problem, which produces a lot of compu-
tational overhead or is difficult to implement, the ANTSAC
algorithm as it is presented in this paper is totally generic,
performs efficiently, and is very simple to implement. In fact,
it is strikingly easy to integrate ANTSAC sampling into an
existing RANSAC implementation. However, we figured out
that ANTSAC as a generic approach is competitive even to
domain specific optimized state-of-the-art methods like, e.g.
PROSAC or LO-RANSAC.

One future task is to evaluate the final fitting capability
of our algorithm. Usually, after performing RANSAC or sim-
ilar methods, the entire consensus set is used to estimate a
final model instance, e.g., a least-squares solution. We think
that the final pheromone matrix snapshot after performing
ANTSAC might contain enough information, namely an addi-
tional weighting of the consensus set, to derive the final best-
fitting-model more or less directly. Another research task is to
investigate if ANTSAC is suited for dynamic and multimodal
problem environments. It could also be interesting to derive a
stopping criterion from the distribution of the pheromone map,
e.g. by checking if there is a stable state reached.
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