

2D Transformations and Homogeneous Coordinates

Prof. Dr. Ulrich Schwanecke

RheinMain University of Applied Sciences

1

Vector Space \mathbb{R}^n

- Scalars $lpha,eta,\gamma,t\in\mathbb{R}$
 - are written in *italic* font.
- Vectors $\mathbf{x} \in \mathbb{R}^n$
 - are written in **bold** font,
 - $\circ~$ are column vectors $\mathbf{x} \in \mathbb{R}^{n imes 1}$, and
 - their components are denoted as $\mathbf{x} = (x_1, \dots, x_n)^\top$, which means go x_i units in the direction of the *i*-the basis vector of a given (Cartesian) coordinate system
- Linear combinations $\alpha \mathbf{x} + \beta \mathbf{y} \in \mathbb{R}^n$ are performed component-wise and stay in the vector space.

Euclidean Vector Space \mathbb{R}^n

• Inner product aka dot product aka scalar product

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = \mathbf{x}^{\top} \overset{\mathcal{W}}{\mathbf{y}} = \sum_{i=1}^{n} x_i y_i \in \mathbb{R}^{n \times n}$$

INX A

• The induced metric measures geometric length

$$\|\mathbf{x}\| = \sqrt{\mathbf{x}^{ op}\mathbf{x}} = \sqrt{\sum_{i=1}^n x_i^2}$$

• Scalar product can measure angle θ between two vectors

$$\mathbf{x}^{\top}\mathbf{y} = \cos\theta \|\mathbf{x}\| \|\mathbf{y}\| \quad \Rightarrow \quad \theta = cos\left(rac{\mathbf{x}^{\top}\mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}
ight)$$

Points vs. Vectors

- Subtle distinction
 - $\circ~$ Points denote positions in \mathbb{R}^3
 - Vectors denote differences of points
- Meaningful operations
 - vector + vector = vector
 - point point = vector
 - point + vector = point
 - o point + point = ???
 - $\circ~~$ only meaningful if $\mathbf{q} = \sum_{i=1}^n lpha_i \mathbf{p}_i$ with

$$egin{array}{lll} & \circ & \sum_{i=1}^n lpha_i = 1 & \Longrightarrow & \mathbf{q} = \mathbf{p}_1 + \sum_{i=2}^n lpha_i (\mathbf{p}_i - \mathbf{p}_1) \ & \circ & \sum_{i=1}^n lpha_i = 0 & \Longrightarrow & \mathbf{q} = \sum_{i=2}^n lpha_i (\mathbf{p}_i - \mathbf{p}_1) \end{array}$$

 $q = \begin{pmatrix} q_{r} \\ q_{y} \end{pmatrix} \in \mathbb{R}^{2}$ $q = \begin{pmatrix} q_{r} - p_{r} \\ q_{y} - p_{r} \end{pmatrix} \in \mathbb{R}^{2}$ $q = \begin{pmatrix} q_{r} - p_{r} \\ q_{y} - p_{r} \end{pmatrix} \in \mathbb{R}^{2}$

Application: Point in Convex Polygon

Test whether the point \mathbf{p} lies in the **convex** polygon $\mathbf{p}_0, \ldots, \mathbf{p}_5 = \mathbf{p}_0$:

- 1. Calculate the edges $\mathbf{v}_i = \mathbf{p}_{i+1} \mathbf{p}_i$ of the polygon
- 2. Determine the normal vectors \mathbf{n}_i $[\mathbf{n}_i = (-y_i, x_i)^T$ if $\mathbf{v}_i = (x_i, y_i)^T$] $(\overset{\times}{\varsigma})^{(\chi)}$
- 3. **p** lies inside the polygon, iff $\langle \mathbf{n}_i, (\mathbf{p} \mathbf{p}_i) \rangle < 0 \quad \forall i = 0, \dots, n-1$
 - $\circ~~$ if $\langle {f n}_i, ({f p}-{f p}_i)
 angle > 0$ for any i, then ${f p}$ is outside the polygon
 - **p** lies on the boundary of the polygon iff $\langle \mathbf{n}_i, (\mathbf{p} \mathbf{p}_i) \rangle \leq 0 \quad \forall i = 0, ..., n 1$, where at least once "=" holds.

Vector Product

The vector product of the vectors \mathbf{v}, \mathbf{w} is given as

$$egin{pmatrix} v_1\ v_2\ v_3\end{pmatrix} imes egin{pmatrix} w_1\ w_2\ w_3\end{pmatrix} = egin{pmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3\ v_1 & v_2 & v_3\ w_1 & v_2 & v_3\ w_1 & w_2 & w_3 \end{bmatrix} = egin{pmatrix} v_2w_3 - v_3w_2\ v_3w_1 - v_1w_3\ v_1w_2 - v_2w_1\end{pmatrix} = egin{pmatrix} 0 & -v_3 & v_2\ v_3 & 0 & -v_1\ -v_2 & v_1 & 0 \end{pmatrix} \ =: [\mathbf{v}]_{ imes} \end{split}$$

It holds

- $\mathbf{v} \times \mathbf{w} = [\mathbf{v}]_{\times} \mathbf{w} = -[\mathbf{w}]_{\times} \mathbf{v} = -\mathbf{w} \times \mathbf{v}$
- the vector $\mathbf{v} \times \mathbf{w}$ is **orthogonal** to the plane defined by \mathbf{v} and \mathbf{w}
- $||\mathbf{v} \times \mathbf{w}||$ equals the area of the parallelogram given by \mathbf{v} and \mathbf{w}
- if $\mathbf{v} imes \mathbf{w} = \mathbf{0} \in \mathbb{R}^3$ the vectors \mathbf{v} and \mathbf{w} are collinear

2D Transformations

2D Transformations

translation

rotation

2D Translation

Translate object by t_x in x and t_y in y

$$egin{pmatrix} x \ y \end{pmatrix} \mapsto egin{pmatrix} x+t_x \ y+t_y \end{pmatrix}$$

translation by (2,1)

2D Scaling

Scale object by s_x in x and s_y in y (around the origin!)

$$egin{pmatrix} x \ y \end{pmatrix} \mapsto egin{pmatrix} s_x \cdot x \ s_y \cdot y \end{pmatrix}$$

scaling by (2,2)

2D Rotation

Rotate object by θ degrees (around the origin!)

rotation by 45 degrees

2D Rotation

Rotate point $(x,y) = (r\cos\phi, r\sin\phi)$ by heta degrees around the origin

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} x \ y \end{pmatrix} &\mapsto egin{pmatrix} r\cos{(\phi+ heta)} \ r\sin{(\phi+ heta)} \end{pmatrix} \ &= egin{pmatrix} r\cos{\phi}\cos{ heta} - r\sin{\phi}\sin{ heta} \ r\cos{\phi}\sin{ heta} + r\sin{\phi}\cos{ heta} \ r\cos{\phi}\sin{ heta} + r\sin{\phi}\cos{ heta} \end{pmatrix} \ &= egin{pmatrix} \cos{ heta} \cdot x - \sin{ heta} \cdot y \ \cos{ heta} \cdot y + \sin{ heta} \cdot x \end{pmatrix} \ &= egin{pmatrix} \cos{ heta} \cdot y + \sin{ heta} \cdot y \ \sin{ heta} \cdot x \end{pmatrix} \ &= egin{pmatrix} \cos{ heta} - \sin{ heta} \ \sin{ heta} & \cos{ heta} \end{bmatrix} \cdot egin{pmatrix} x \ y \end{pmatrix} \end{aligned}$$

2D Rotation

Rotate object by θ degrees (around the origin!)

$$egin{pmatrix} x \ y \end{pmatrix} \mapsto egin{pmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{pmatrix} \cdot egin{pmatrix} x \ y \end{pmatrix}$$

rotation by 45 degrees

How to rotate/scale around object center?

- 1. Translate center to origin
- 2. Scale object
- 3. Rotate object
- 4. Translate center back

Important Questions

• How to efficiently combine several transformations?

Represent transformations as matrices!

Matrix Representation

Which transformations can be written as matrices?

Linear Maps & Matrices

- Assume a *linear* transformation $L: \mathbb{R}^n \to \mathbb{R}^n$ $\circ L(\mathbf{a} + \mathbf{b}) = L(\mathbf{a}) + L(\mathbf{b})$
 - $\circ L(\alpha \mathbf{a}) = \alpha L(\mathbf{a})$
- Point $\mathbf{x} = (x_1, \dots, x_n)^ op$ can be written as

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \ldots + x_n \mathbf{e}_n$$

Linear Maps & Matrices

• Exploit linearity of L

$$egin{aligned} L\left(\mathbf{x}
ight) &= L\left(x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + \ldots + x_n\mathbf{e}_n
ight) \ &= x_1\,L\left(\mathbf{e}_1
ight) + x_2\,L\left(\mathbf{e}_2
ight) + \ldots + x_n\,L\left(\mathbf{e}_n
ight) \ &= \underbrace{\left[L\left(\mathbf{e}_1
ight),\,L\left(\mathbf{e}_2
ight),\,\ldots,\,L\left(\mathbf{e}_n
ight)
ight]}_{=:\mathbf{L}}\cdotegin{pmatrix} x_1\dots\ x_n\end{pmatrix} \,=\,\mathbf{L}\,\mathbf{x} \end{aligned}$$

• Every linear transformation $L: \mathbb{R}^n \to \mathbb{R}^n$ can be written as a unique $(n \times n)$ matrix \mathbf{L} whose columns are the images of the basis vectors $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$.

VERY useful fact! 👍 VERY-VERY useful! 🥸

Linear vs. Affine Transformations

- Every linear transformation has to preserve the origin
 L(0) = L · 0 = 0
- Translation is not a linear mapping $\circ T(0,0) = (t_x,t_y)$
- Translation is an **affine** transformation
 - affine mapping = linear mapping + translation

$$\circ \ egin{pmatrix} x \ y \end{pmatrix} \mapsto egin{pmatrix} a & b \ c & d \end{pmatrix} \cdot egin{pmatrix} x \ y \end{pmatrix} + egin{pmatrix} t_x \ t_y \end{pmatrix} = \mathbf{L}\mathbf{x} + \mathbf{t}$$

But we REALLY want to represent translations as matrices!

Homogeneous Coordinates

- Extend cartesian coordiantes (x, y) to homogeneous coordinates (x, y, w)
 - $\circ~$ Points are represented by $(x,y,1)^ op$
 - $\circ~$ Vectors are represented by $(x,y,0)^ op$
- Only homogeneous coordinates with $w \in \{0,1\}$ are easy to interpret
 - vector + vector = vector
 - point point = vector
 - point + vector = point
 - o point + point = ??
- Only affine combinations of points \mathbf{x}_i make sense
 - $\circ ~\sum_i lpha_i \mathbf{x}_i$ with $\sum_i lpha_i = 1$ (and $\sum_i lpha_i = 0$)

Homogeneous Coordinates in 2D

- Points
 - Each homogeneous vector of the form $k \cdot (x_1, x_2, x_3)^ op$ with $k, x_3 \neq 0$ represents the same 2D point $(x_1/x_3, x_2/x_3)^ op$
 - $\circ~$ Each homogeneous vector of the form $(x_1,x_2,0)^ op$ represents the 2D vector $(x_1,x_2)^ op$
- Lines
 - Each homogeneous vector of the form $k \cdot (a, b, c)^ op$ with k
 eq 0 represents the same 2D line $a \cdot x + b \cdot y + c = 0$
- Incidence of points and lines
 - A point with homogenous vector $\mathbf{p}=(x_1,x_2,x_3)^ op$ lies on the line with homogeneous vector $\mathbf{l}=(a,b,c)^ op$ iff $\langle \mathbf{p},\mathbf{l}
 angle=0$

Intersection of two lines in 2D

Two lines with homogenous vectors l_1 and l_2 intersect in a point with homogeneous coordinate vector $\mathbf{p} = \mathbf{l}_1 \times \mathbf{l}_2 = [\mathbf{l}_1]_{\times} \mathbf{l}_2$

$$k_{1} \times A_{2} = \begin{bmatrix} 6 & 1 & 1 \\ -1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$

$$k_{2} \begin{pmatrix} 0 \\ -2 \\ -2 \end{pmatrix} \stackrel{(-1)}{=} \begin{pmatrix} 0$$

Line given by two points in 2D

The line given by two points with homogenous vectors \mathbf{p}_1 and \mathbf{p}_2 is given by the homogeneous coordinate vector $\mathbf{l} = \mathbf{p}_1 \times \mathbf{p}_2 = [\mathbf{p}_1]_{\times} \mathbf{p}_2$

Homogeneous Coordinates

• Matrix representation of translations

$$egin{pmatrix} x \ y \end{pmatrix} + egin{pmatrix} t_x \ t_y \end{pmatrix} \quad \longleftrightarrow \quad egin{pmatrix} 1 & 0 & t_x \ 0 & 1 & t_y \ 0 & 0 & 1 \end{pmatrix} \cdot egin{pmatrix} x \ y \ 1 \end{pmatrix}$$

• Matrix representation of arbitrary affine transformation

$$egin{pmatrix} a & b \ c & d \end{pmatrix} \cdot egin{pmatrix} x \ y \end{pmatrix} + egin{pmatrix} t_x \ t_y \end{pmatrix} & \longleftrightarrow & egin{pmatrix} a & b & t_x \ c & d & t_y \ 0 & 0 & 1 \end{pmatrix} \cdot egin{pmatrix} x \ y \ 1 \end{pmatrix}$$

Matrix Representation

Columns of matrix are images of basis vectors!

Concatenation of Transformations

- Apply sequence of affine transformations $\mathbf{A}_1, \dots, \mathbf{A}_k$
- Concatenate transformations by matrix multiplication

$$A_k\left(\ldots A_2\left(A_1\left(\mathbf{x}
ight)
ight)
ight) \ = \ \underbrace{\mathbf{A}_k\cdots\mathbf{A}_2\cdot\mathbf{A}_1}_{\mathbf{M}}\cdot\mathbf{x}$$

• Precompute matrix ${f M}$ and apply it to all (=many!) object vertices.

Very important for performance!

Ordering of Matrix Multiplication

• First rotation, then translation

• First translation, then rotation

How to rotate/scale around object center?

Matrix Representation?

Important Questions

- What is preserved by affine transformations?
- What is preserved by orthogonal transformations?

Affine Transformations

• Any point ${f C}$ on a line is an affine combination

$$(1-lpha) {f A} + lpha {f B}$$

q = [0,1]

9

of its endpoints \mathbf{A} and \mathbf{B} .

• Affine transformation ${f M}$ preserves affine combinations

$$\mathbf{M}\left((1-lpha)\mathbf{A}+lpha\mathbf{B}
ight)\ =\ (1-lpha)\mathbf{M}\left(\mathbf{A}
ight)+lpha\mathbf{M}\left(\mathbf{B}
ight)$$

• Straight lines stay straight lines

Orthogonal Transformations

- A matrix ${f M}$ is orthogonal iff...
 - ...its columns are orthonormal vectors
 - ...its rows are orthonormal vectors
 - $\circ~$...its inverse is its transposed: $\mathbf{M}^{-1}=\mathbf{M}^{\top}$
- Orthogonal matrices / mappings...
 - ...preserve angles and lengths
 - ...can only be rotations or reflections
 - ...have determinant +1 or -1

Quiz: Transformations

Which matrix represents the 2D translation $\begin{pmatrix} x \\ \cdots \end{pmatrix}$

$$ig)\mapsto ig(egin{array}{c} x+a \ y+b \end{pmatrix}$$
?

Quiz: Transformations

Which matrix computes the transformation on the right?

A:
$$\mathbf{T}(2,1) \cdot \mathbf{S} \cdot \mathbf{R}$$
B: $\mathbf{T}(2,2) \cdot \mathbf{S} \cdot \mathbf{R} \cdot \mathbf{T}\left(-\frac{1}{2},-\frac{1}{2}\right)$ C: $\mathbf{R} \cdot \mathbf{S} \cdot \mathbf{T}\left(\frac{3}{2},\frac{3}{2}\right)$ D: $\mathbf{T}\left(-\frac{1}{2},-\frac{1}{2}\right) \cdot \mathbf{R} \cdot \mathbf{S} \cdot \mathbf{T}(2,2)$

Quiz: Lines and Points in 2D

Give the homogenous vector for line through the points $\mathbf{x} = (1,2)^ op$ and $\mathbf{y} = (3,4)^ op$.

A:
$$(1, -1, 1)^{\top}$$
 B: $(1, 2, 3)^{\top}$

 C: $(2, 3, 4)^{\top}$
 D: $(-2, 2, -2)^{\top}$

Quiz: Lines and Points in 2D

Give the homogenous vector for the intersection of the lines x - y + 1 = 0 and x - y - 1 = 0.

A:
$$(2, 2, 0)^{\top}$$
 B: $(1, 2, 3)^{\top}$

 C: $(1, 1, 0)^{\top}$
 D: $(-2, 2, -2)^{\top}$