## Computer Graphics

## 2D Transformations and Homogeneous Coordinates

Prof. Dr. Ulrich Schwanecke

RheinMain University of Applied Sciences

## Vector Space $\mathbb{R}^{n}$

- Scalars $\alpha, \beta, \gamma, t \in \mathbb{R}$
- are written in italic font.
- Vectors $\mathbf{x} \in \mathbb{R}^{n}$
- are written in bold font,
- are column vectors $\mathbf{x} \in \mathbb{R}^{n \times 1}$, and
- their components are denoted as $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top}$, which means go $x_{i}$ units in the direction of the $i$-the basis vector of a given (Cartesian) coordinate system
- Linear combinations $\alpha \mathbf{x}+\beta \mathbf{y} \in \mathbb{R}^{n}$ are performed component-wise and stay in the vector space.


## Euclidean Vector Space $\mathbb{R}^{n}$

- Inner product aka dot product aka scalar product

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x} \cdot \mathbf{y}=\underset{\sim}{\mathbf{x}^{\top}} \stackrel{\mathbb{U}}{ }^{\mathbf{y}}=\sum_{i=1}^{n} x_{i} y_{i} \in \mathbb{R}^{1 \times 1}=\mathbb{R}
$$

- The induced metric measures geometric length

$$
\|\mathbf{x}\|=\sqrt{\mathbf{x}^{\top} \mathbf{x}}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

- Scalar product can measure angle $\theta$ between two vectors

$$
\mathbf{x}^{\top} \mathbf{y}=\cos \theta\|\mathbf{x}\|\|\mathbf{y}\| \quad \Rightarrow \quad \theta=\operatorname{acos}\left(\frac{\mathbf{x}^{\top} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}\right)
$$

Points vs. Vectors

- Subtle distinction
- Points denote positions in $\mathbb{R}^{3}$
- Vectors denote differences of points
- Meaningful operations
- vector + vector = vector
- point - point = vector
- point + vector = point
- point + point = ???
- only meaningful if $\mathbf{q}=\sum_{i=1}^{n} \alpha_{i} \mathbf{p}_{i}$ with

$$
\binom{p_{x}}{p_{y}}=p\left(\begin{array}{l}
q=\binom{q_{x}}{q_{y}} \in \mathbb{R}^{2} \\
q-p=\binom{q_{x}-p_{y}}{q_{y}-p_{y}} \in \mathbb{R}^{2}
\end{array}\right.
$$

- $\sum_{i=1}^{n} \alpha_{i}=1 \Longrightarrow \mathbf{q}=\mathbf{p}_{1}+\sum_{i=2}^{n} \alpha_{i}\left(\mathbf{p}_{i}-\mathbf{p}_{1}\right)$
- $\sum_{i=1}^{n} \alpha_{i}=0 \Longrightarrow \mathbf{q}=\sum_{i=2}^{n} \alpha_{i}\left(\mathbf{p}_{i}-\mathbf{p}_{1}\right)$



$$
\begin{array}{ll}
1 \cdot p+1 \cdot q & \alpha_{0}+\alpha_{1}=2 \neq 1 \\
\alpha_{0} \alpha_{1} & \alpha_{0} \\
u & \alpha_{0}+\alpha_{1}=\frac{1}{2}+\frac{1}{7}=1 \\
\frac{1}{2} p+\frac{1}{2} q &
\end{array}
$$

$$
S=\frac{1}{2} p+\frac{1}{2} q
$$

$\dot{P}_{1} \cdot S$

$$
=\frac{p}{p}+\frac{1}{2}(q-p)
$$

Peecher Velita
$S=\sum_{i=1}^{5} \frac{1}{5} P_{i}=\frac{1}{5} \sum_{i=1}^{5} P_{i}$

## Application: Point in Convex Polygon

Test whether the point $\mathbf{p}$ lies in the convex polygon $\mathbf{p}_{0}, \ldots, \mathbf{p}_{5}=\mathbf{p}_{0}$ :

1. Calculate the edges $\mathbf{v}_{i}=\mathbf{p}_{i+1}-\mathbf{p}_{i}$ of the polygon
2. Determine the normal vectors $\mathbf{n}_{i}$

$$
\left[\mathbf{n}_{i}=\left(-y_{i}, x_{i}\right)^{T} \text { if } \mathbf{v}_{i}=\left(x_{i}, y_{i}\right)^{T}\right]
$$


3. $\mathbf{p}$ lies inside the polygon, iff
$\left\langle\mathbf{n}_{i},\left(\mathbf{p}-\mathbf{p}_{i}\right)\right\rangle<0 \quad \forall i=0, \ldots, n-1$

- if $\left\langle\mathbf{n}_{i},\left(\mathbf{p}-\mathbf{p}_{i}\right)\right\rangle>0$ for any $i$, then $\mathbf{p}$ is outside the polygón
- $\mathbf{p}$ lies on the boundary of the polygon iff $\left\langle\mathbf{n}_{i},\left(\mathbf{p}-\mathbf{p}_{i}\right)\right\rangle \leq 0 \quad \forall i=0, \ldots, n-1$, where at least once " $=$ " holds.



## Vector Product

The vector product of the vectors $\mathbf{v}, \mathbf{w}$ is given as


$$
\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \times\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)=\left|\begin{array}{ccc}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|=\left(\begin{array}{c}
v_{2} w_{3}-v_{3} w_{2} \\
v_{3} w_{1}-v_{1} w_{3} \\
v_{1} w_{2}-v_{2} w_{1}
\end{array}\right)=\underbrace{\left(\begin{array}{ccc}
0 & -v_{3} & v_{2} \\
v_{3} & 0 & -v_{1} \\
-v_{2} & v_{1} & 0
\end{array}\right)}_{=:[\mathbf{v}]_{\times}}\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)
$$

It holds

- $\mathbf{v} \times \mathbf{w}=[\mathbf{v}]_{\times} \mathbf{w}=-[\mathbf{w}]_{\times} \mathbf{v}=-\mathbf{w} \times \mathbf{v}$

- the vector $\mathbf{v} \times \mathbf{w}$ is orthogonal to the plane defined by $\mathbf{v}$ and $\mathbf{w}$
- \| $\mathbf{v} \times \mathbf{w} \|$ equals the area of the parallelogram given by $\mathbf{v}$ and $\mathbf{w}$
- if $\mathbf{v} \times \mathbf{w}=\mathbf{0} \in \mathbb{R}^{3}$ the vectors $\mathbf{v}$ and $\mathbf{w}$ are collinear



## 2D Transformations

## 2D Transformations



## 2D Translation

Translate object by $t_{x}$ in $x$ and $t_{y}$ in $y$

$$
\binom{x}{y} \mapsto\binom{x+t_{x}}{y+t_{y}}
$$


translation by $(2,1)$

## 2D Scaling

Scale object by $s_{x}$ in $x$ and $s_{y}$ in $y$ (around the origin!)

$$
\binom{x}{y} \mapsto\binom{s_{x} \cdot x}{s_{y} \cdot y}
$$


scaling by $(2,2)$

## 2D Rotation

Rotate object by $\theta$ degrees (around the origin!)

rotation by 45 degrees

## 2D Rotation

Rotate point $(x, y)=(r \cos \phi, r \sin \phi)$ by $\theta$ degrees around the origin

$$
\begin{aligned}
\binom{x}{y} & \mapsto\binom{r \cos (\phi+\theta)}{r \sin (\phi+\theta)} \\
& =\binom{r \cos \phi \cos \theta-r \sin \phi \sin \theta}{r \cos \phi \sin \theta+r \sin \phi \cos \theta} \\
& =\binom{\cos \theta \cdot x-\sin \theta \cdot y}{\cos \theta \cdot y+\sin \theta \cdot x} \\
& =\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \cdot\binom{x}{y}
\end{aligned}
$$

## 2D Rotation

Rotate object by $\theta$ degrees
(around the origin!)

$$
\binom{x}{y} \mapsto\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \cdot\binom{x}{y}
$$


rotation by 45 degrees

## How to rotate/scale around object center?

1. Translate center to origin
2. Scale object
3. Rotate object
4. Translate center back


This can get quite messy!

## Important Questions

- How to efficiently combine several transformations?


Represent transformations as matrices!

## Matrix Representation


scaling
$\mathbf{S}\left(s_{x}, s_{y}\right)=\left[\begin{array}{cc}s_{x} & 0 \\ 0 & s_{y}\end{array}\right]$
$\mathbf{R}(\theta)=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

translation
$\mathbf{T}\left(t_{x}, t_{y}\right)=\left[\begin{array}{ll}? & ? \\ ? & ?\end{array}\right]$

Which transformations can be written as matrices?

## Linear Maps \& Matrices

- Assume a linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
- $L(\mathbf{a}+\mathbf{b})=L(\mathbf{a})+L(\mathbf{b})$
- $L(\alpha \mathbf{a})=\alpha L(\mathbf{a})$
- Point $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top}$ can be written as

$$
\mathbf{x}=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\ldots+x_{n} \mathbf{e}_{n}
$$

## Linear Maps \& Matrices

- Exploit linearity of $L$

$$
\begin{aligned}
L(\mathbf{x}) & =L\left(x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\ldots+x_{n} \mathbf{e}_{n}\right) \\
& =x_{1} L\left(\mathbf{e}_{1}\right)+x_{2} L\left(\mathbf{e}_{2}\right)+\ldots+x_{n} L\left(\mathbf{e}_{n}\right) \\
& =\underbrace{\left[L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), \ldots, L\left(\mathbf{e}_{n}\right)\right]}_{=: \mathbf{L}} \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\mathbf{L} \mathbf{x}
\end{aligned}
$$

- Every linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ can be written as a unique $(n \times n)$ matrix $\mathbf{L}$ whose columns are the images of the basis vectors $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$.

```
VERY useful fact! \ V VERY-VERY useful! © 
```


## Linear vs. Affine Transformations

- Every linear transformation has to preserve the origin
- $L(\mathbf{0})=\mathbf{L} \cdot \mathbf{0}=\mathbf{0}$
- Translation is not a linear mapping

$$
\text { - } T(0,0)=\left(t_{x}, t_{y}\right)
$$



- Translation is an affine transformation
- affine mapping $=$ linear mapping + translation

。 $\binom{x}{y} \mapsto\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \cdot\binom{x}{y}+\binom{t_{x}}{t_{y}}=\mathbf{L x}+\mathbf{t}$

[^0]
## Homogeneous Coordinates

- Extend cartesian coordiantes $(x, y)$ to homogeneous coordinates $(x, y, w)$
- Points are represented by $(x, y, 1)^{\top}$
- Vectors are represented by $(x, y, 0)^{\top}$
- Only homogeneous coordinates with $w \in\{0,1\}$ are easy to interpret
- vector + vector = vector
- point - point $=$ vector
- point + vector = point
- point + point = ? ?
- Only affine combinations of points $\mathbf{x}_{i}$ make sense
- $\sum_{i} \alpha_{i} \mathbf{x}_{i}$ with $\sum_{i} \alpha_{i}=1$ (and $\sum_{i} \alpha_{i}=0$ )


## Homogeneous Coordinates in 2D

- Points
- Each homogeneous vector of the form $k \cdot\left(x_{1}, x_{2}, x_{3}\right)^{\top}$ with $k, x_{3} \neq 0$ represents the same 2D point $\left(x_{1} / x_{3}, x_{2} / x_{3}\right)^{\top}$
- Each homogeneous vector of the form $\left(x_{1}, x_{2}, 0\right)^{\top}$ represents the 2D vector $\left(x_{1}, x_{2}\right)^{\top}$
- Lines
- Each homogeneous vector of the form $k \cdot(a, b, c)^{\top}$ with $k \neq 0$ represents the same 2D line $a \cdot x+b \cdot y+c=0$
- Incidence of points and lines
- A point with homogenous vector $\mathbf{p}=\left(x_{1}, x_{2}, x_{3}\right)^{\top}$ lies on the line with homogeneous vector $\mathbf{l}=(a, b, c)^{\top}$ iff $\langle\mathbf{p}, \mathbf{l}\rangle=0$

Intersection of two lines in 2D
Two lines with homogenous vectors $\mathbf{l}_{1}$ and $\mathbf{l}_{2}$ intersect in a point with homogeneous coordinate vector $\mathbf{p}=\mathbf{l}_{1} \times \mathbf{l}_{2}=\left[\mathbf{l}_{1}\right]_{\times} \mathbf{l}_{2}$

$$
x=1 \quad 1 \cdot x+0 \cdot y-1=0
$$




Line given by two points in 2D
The line given by two points with homogenous vectors $\mathbf{p}_{1}$ and $\mathbf{p}_{2}$ is given by the homogeneous coordinate vector $\mathbf{l}=\mathbf{p}_{1} \times \mathbf{p}_{2}=\left[\mathbf{p}_{1}\right] \times \mathbf{p}_{2}$


## Homogeneous Coordinates

- Matrix representation of translations

$$
\binom{x}{y}+\binom{t_{x}}{t_{y}} \longleftrightarrow\left(\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

- Matrix representation of arbitrary affine transformation

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{x}{y}+\binom{t_{x}}{t_{y}} \longleftrightarrow\left(\begin{array}{llc}
a & b & t_{x} \\
c & d & t_{y} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

## Matrix Representation



## Concatenation of Transformations

- Apply sequence of affine transformations $\mathbf{A}_{1}, \ldots, \mathbf{A}_{k}$
- Concatenate transformations by matrix multiplication

$$
A_{k}\left(\ldots A_{2}\left(A_{1}(\mathbf{x})\right)\right)=\underbrace{\mathbf{A}_{k} \cdots \mathbf{A}_{2} \cdot \mathbf{A}_{1}}_{\mathbf{M}} \cdot \mathbf{x}
$$

- Precompute matrix $\mathbf{M}$ and apply it to all (=many!) object vertices.

[^1]
## Ordering of Matrix Multiplication

- First rotation, then translation


How to rotate/scale around object center?

1. Translate center to origin
2. Scale object
$\mathbb{R}^{3 \times 3}{ }_{3} G=T_{2} \cdot R \cdot S \cdot T_{1}$
3. Rotate object
4. Translate center back $S=\left[\begin{array}{ccc}3 / 2 & 0 & 0 \\ 0 & 3 / 2 & 0 \\ 0 & 0 & 1\end{array}\right] \quad R=\left[\begin{array}{ccc}\sqrt{2} / 2 & -\sqrt{2} & 0 \\ \sqrt{2} / 2 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$


What is the matrix representation?


$$
T_{1}=\left[\begin{array}{ccc}
1 & 0 & -3 \\
0 & 1 & -3 \\
0 & 0 & 1
\end{array}\right]
$$

## Matrix Representation?




## Important Questions

- What is preserved by affine transformations?
- What is preserved by orthogonal transformations?



## Affine Transformations

- Any point $\mathbf{C}$ on a line is an affine combination

$$
(1-\alpha) \mathbf{A}+\alpha \mathbf{B} \quad \alpha \in[\overline{0}, \ell]
$$

of its endpoints $\mathbf{A}$ and $\mathbf{B}$.

- Affine transformation $\mathbf{M}$ preserves affine combinations


$$
\mathbf{M}((1-\alpha) \mathbf{A}+\alpha \mathbf{B})=(1-\alpha) \mathbf{M}(\mathbf{A})+\alpha \mathbf{M}(\mathbf{B})
$$

- Straight lines stay straight lines



## Orthogonal Transformations

- A matrix $\mathbf{M}$ is orthogonal iff...
- ...its columns are orthonormal vectors
- ...its rows are orthonormal vectors
- ...its inverse is its transposed: $\mathbf{M}^{-1}=\mathbf{M}^{\top}$
- Orthogonal matrices / mappings...
- ...preserve angles and lengths
- ...can only be rotations or reflections
- ...have determinant +1 or -1


## Quiz

## Quiz: Transformations

Which matrix represents the 2D translation $\binom{x}{y} \mapsto\binom{x+a}{y+b}$ ?

$$
\begin{array}{ll}
\mathrm{A}:\left(\begin{array}{lll}
1 & 0 & a \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) & \mathrm{B}:\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & 1
\end{array}\right) \\
\mathrm{C}:\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
a & b & 1
\end{array}\right) & \mathrm{D}:\left(\begin{array}{lll}
0 & 0 & a \\
0 & 0 & b \\
0 & 0 & 1
\end{array}\right)
\end{array}
$$

## Quiz: Transformations

Which matrix computes the transformation on the right?


$$
\text { A: } \mathbf{T}(2,1) \cdot \mathbf{S} \cdot \mathbf{R}
$$

C: $\mathbf{R} \cdot \mathbf{S} \cdot \mathbf{T}\left(\frac{3}{2}, \frac{3}{2}\right)$
D: $\mathbf{T}\left(-\frac{1}{2},-\frac{1}{2}\right) \cdot \mathbf{R} \cdot \mathbf{S} \cdot \mathbf{T}(2,2)$

## Quiz: Lines and Points in 2D

Give the homogenous vector for line through the points $\mathbf{x}=(1,2)^{\top}$ and $\mathbf{y}=(3,4)^{\top}$.

$$
\begin{aligned}
& \text { A: }(1,-1,1)^{\top} \quad \text { B: }(1,2,3)^{\top} \\
& \text { C: }(2,3,4)^{\top} \quad \text { D: }(-2,2,-2)^{\top}
\end{aligned}
$$

## Quiz: Lines and Points in 2D

Give the homogenous vector for the intersection of the lines $x-y+1=0$ and $x-y-1=0$.

$$
\text { A: } \left.(2,2,0)^{\top}\right] \quad \text { B: }(1,2,3)^{\top}
$$

C: $(1,1,0)^{\top}$
D: $(-2,2,-2)^{\top}$


[^0]:    But we REALLY want to represent translations as matrices!

[^1]:    Very important for performance!

