Assignment 2

Welcome to the second assignment of the lecture 3D Vision and Deep Learning in summer semester 2024. Please read all instructions carefully! The goal of this assignment is to get a deeper understanding of projective mappings and the structure of three-dimensional rotations. Submission is due on Monday, April 29th, 2024 at 2pm.

Exercise 1 (2 points). Show that a projective mapping of a straight line g to a straight line \bar{g} preserves the cross ratio, i.e. $D(A, B, C, D)=D(\bar{A}, \bar{B}, \bar{C}, \bar{D})$.
Use the fact that the cross ratio can be defined for four points A, B, C, D lying on a straight line as well as for four straight lines a, b, c, d intersecting in a common point as

$$
D(a, b, c, d)=\frac{\sin (a b)}{\sin (a c)}: \frac{\sin (b d)}{\sin (c d)}
$$

Hint: Calculate the aera of triangles using the following two different formulas:

$$
F_{\triangle A C S}=\frac{1}{2}|A C| h=\frac{1}{2}|S A||S C| \sin (a c)
$$

Exercise 2 (5 points). A homography H between two images can be determined using four point correspondences $\mathbf{x}_{i}, \mathbf{x}_{i}^{\prime}$, where $\mathbf{x}_{i}=\left(x_{i}, y_{i}\right)$ is a point in the source and $\mathbf{x}_{i}^{\prime}=\left(x_{i}^{\prime}, y_{i}^{\prime}\right)$ its corresponding point in the target image. An alternative to directly solving the emerging linear system for the 8 unknowns of H is a two-stage mapping over a unit square using the identity $H=H_{2} H_{1}^{-1}$ (see the figure below).

For the homography $H=\left(h_{i j}\right)_{\substack{i=1,2,3 \\ j=1,2,3}}$ that maps the unit square according to

$$
(0,0) \rightarrow \mathrm{x}_{1}, \quad(1,0) \rightarrow \mathrm{x}_{2}, \quad(1,1) \rightarrow \mathrm{x}_{3}, \quad(0,1) \rightarrow \mathrm{x}_{4}
$$

Prof. Dr. U. Schwanecke
onto the four points $\mathbf{x}_{i}=\left(x_{i}, y_{i}\right), i=1, \ldots, 4$ it holds

$$
\begin{array}{lll}
h_{11}=x_{2}-x_{1}+h_{31} x_{2}, & h_{12}=x_{4}-x_{1}+h_{32} x_{4}, & h_{13}=x_{1} \\
h_{21}=y_{2}-y_{1}+h_{31} y_{2}, & h_{22}=y_{4}-y_{1}+h_{32} y_{4}, & h_{23}=y_{1}
\end{array}
$$

with

$$
\begin{aligned}
& h_{31}=\frac{\left(x_{1}-x_{2}+x_{3}-x_{4}\right)\left(y_{4}-y_{3}\right)-\left(y_{1}-y_{2}+y_{3}-y_{4}\right)\left(x_{4}-x_{3}\right)}{\left(x_{2}-x_{3}\right)\left(y_{4}-y_{3}\right)-\left(x_{4}-x_{3}\right)\left(y_{2}-y_{3}\right)} \\
& h_{32}=\frac{\left(y_{1}-y_{2}+y_{3}-y_{4}\right)\left(x_{2}-x_{3}\right)-\left(x_{1}-x_{2}+x_{3}-x_{4}\right)\left(y_{2}-y_{3}\right)}{\left(x_{2}-x_{3}\right)\left(y_{4}-y_{3}\right)-\left(x_{4}-x_{3}\right)\left(y_{2}-y_{3}\right)}
\end{aligned}
$$

1. (1 point) Determine the homography H, that maps the four points

$$
\mathbf{x}_{1}=(2,5), \quad \mathbf{x}_{2}=(4,6), \quad \mathbf{x}_{3}=(7,9), \quad \mathbf{x}_{4}=(5,9)
$$

to the four corresponding points

$$
\mathbf{x}_{1}^{\prime}=(4,3), \quad \mathbf{x}_{2}^{\prime}=(5,2), \quad \mathbf{x}_{3}^{\prime}=(9,3), \quad \mathbf{x}_{4}^{\prime}=(7,5)
$$

using the described two-stage mapping over the unit square. Thereby, first determine the matrices H_{1}, H_{2} und H_{1}^{-1}.
2. (4 points) Write a python script using $O p e n C V$ that allows to select four points in an image using the mouse. After the four points are selected the complete image should be transformed by a homography that is determined by the four selected points and the four original corners of the image as corresponding points. Finally your program should display the transformed image.

Exercise 3 (5 points). A map $g: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ is called a rigid-body motion or a special Euclidean transformation if it preserves the norm and the cross product of any two vectors, i.e.

1. norm: $\|g(\mathbf{u})\|=\|\mathbf{u}\| \forall \mathbf{u} \in \mathbb{R}^{3}$.
2. cross product: $g(\mathbf{u} \times \mathbf{v})=g(\mathbf{u}) \times g(\mathbf{v}) \forall \mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$.

The collection of all such transfomations (motions) is denoted by $S E(3)$. Given a rotation matrix $R \in S O(3)$, its action on a vector \mathbf{u} is defined as $R \mathbf{u}$. Prove that any rotation matrix preserve both the inner product and the cross product of two vectors. Therefore, a rotation is indeed a rigid-body motion.

Hint: You can use the fact, that for any regular matrix $A \in \mathbb{R}^{3 \times 3}$ and any vector $\mathbf{v} \in \mathbb{R}^{3}$ it holds $[A \mathbf{v}]_{\times}=\operatorname{det}(A) A^{-\top}[\mathbf{v}]_{\times} A^{-1}$.

