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Last lecture



Last lecture

e 1D Transformations

e Primitives and Transformations

o Homogeneous Coordinates
o Points, Lines and Planes
2D Transformations

o Homography Estimation
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Today’s Lecture



Today’s Lecture

e The 3D Projective Space P3

o Points, Planes,
o Straight Lines, ...
o ...and their transformations



Reminder




Points

Points in 1D/2D/3D can be written in inhomogeneous coordinates as
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where P* = R™"1 \ {0} is called projective space. Homogeneous vectors that differ



only by scale are considered equivalent and define an equivalence class, thus
homogeneous vectors are defined only up to scale.



Points

An inhomogeneous vector X is converted to a homogeneous vector X as follows
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with the augmented vector X. To convert in opposite direction one has to divide by w:
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Homogeneous points whose last element is w0 = 0 can’t be represented with
inhomogeneous coordinates. They are called ideal points or points at infinity.



2D Lines

2D lines can also be expressed using homogeneous coordinates 1 = (a, b, c) '
{x|1x=0} <& {z,y|ar+dby+c=0}
e We can normalizeltol = (ng,n,,d)' = (n,d)' with |n||2 = 1 (Hesse normal
form)
o In this case, n is the normal vector perpendicular to the line and d is its distance to the origin.

e An exception is the line at infinity ioo = (0,0, 1)T which passes through all ideal
points.
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Duality (in 2D)

The duality principle:

For every proposition of two-dimensional projective geometry there exists a dual
proposition which is obtained by interchanging the role of points and lines in the
original proposition.

e For example, dual are

P
o {
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Overview of 2D Transformations

Transformation Matrix # DOF Preserves
translation I t]oxs 2 orientation
rigid (Euclidean) R t]oxs 3 length
similarity sR tloxs 4 angles

affine A t]oxs 6 parallelism
projective H]3.3 8 straight lines

e Transformations form nested set of groups (closed under composition, inverse)

e 2 X 3 matrices are extended with a third [0 ' 1] row for homogeneous transforms

11



The Projective Space P3



3D Planes

3D planes can also be represented with homogeneous coordinates m = (a, b, c, d)T as

(x|m'x=0} < {z,9,2|ax+by+cz+d=0}

e 1 can be normalized: 1h = (ny,ny,n,,d)' = (n,d)', ||n||2 = 1 (Hesse normal
form)

o m is the normal vector the plane and d its distance to the origin

e An exception is the plane at infinity i = (0,0, 0, 1) " which passes through all ideal
points (=points at infinity) for which w = 0
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Plane given by Three Points in P°

e For a plane m that contains the three points X1, X2, X3 (in general position) it must
holdX,m =X, h =%X;m =0or 2»
R
Xl R
W
%X, |[m=0
~T
| X3

e Thus the plane m that contains the three points X1, X5, X3 is the right null space of

- -
X1 L1, L1, Li13 L1y
=T 1 _

Xs = Lo, L2, L2, L2,

X, | r3, T3, T3, T3,

e Does that relate to calculating the straight line through two points?
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Reminder: Straight Line given by Two Points in P?

e Alinelin P2 through x1, X5 (in general position) is given by the right null space of

4
1T Tr1, T1, :B13 2\ @)
=T — gz - L
X, L2 5022 2

which can be calculated directly by the cross proguct ie.l1= X1 X X9

e As any point X on the line lis a linear combination of X1,X> it must hold

M

-
m1 w2 m3
det }"clT =det |z, z1, z1,| =0
T
X5 Lo, L2, L24



e Laplace expansion resultsin 0 = D3 — x,D13 + x, D12 with

L1, wlj =
), i.e.1 = (Da3, —Dhss3, D12)T
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Plane given by Three Points in P°

e As any point X on the plane m is a linear combination of X1, X5, X3, it must hold

i_l_

xl "I;2 "I;3 a:4
}~CT L1 L1 L1 L1
1
det | | = det : ’ ? 1 =0
x2 wgl 21322 $23 3324
Xq T3, T3, T3 T3,
e |aplace expansion results in

L1,
0= $1D234 — $2D134 + $3D124 -+ $4D123 with Dijk = det | xo,
3.

1

and thus i = (D234, —D134, D124, —D123) '
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Example: Plane given by Three non-vanishing Points in P3

e For the plane m through the three non-vanishing points

1= (1), &o=("2), ®s= ("2
1 — 1 9 2 — 1 9 3 — 1
it holds e.g.

L1, L1, 1 L1, — L3, L13 — L34 0
Dogy =det | x3, x3, 1| =det| xo, —x3, T2, —x3, 0] = ((x1 —x3) X (X2 —x3))1
I3 I3 I3 1

2 2 3

and thus

B —x4 (X1 X X3)

- [(Xl —X3) X (%2 — Xs)]
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Duality (in 3D)

The duality principle:

For every proposition of three-dimensional projective geometry there exists a dual
proposition which is obtained by interchanging the role of points and planes in the
original proposition.

e Dual are

~

X VR m

X is right null space of [fhy, sy, 3] <— mis right null space of [X;, X, %3] '

Straight Lines are dual to Straight Lines
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Straight Lines in Projective Space P°

e Representing a straight line in 3D is problematic
o Straight lines in 3D have 4 DOF

o Thus they would have to be represelgted by a ~_
homogeneous vector with five eIer&ents /
-~

o Are there more suitable represent$tions?
>

’ \
e Usual representations for stra%gqué]aac%C*\ =a+{-b
are )
o Linear combination of two points b,,lt‘v:)‘cbg" A
o Plicker matrices
o Plucker coordinates
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Straight Lines in P° as Linear Combination of Points

e A straight line 1 can be represented as the space

spanned by the matrix W, consisting of points

(on a straight line) aand b
~T
. a

o AxU
W = £ ep

o The span of W ist the bundle of points A& + ,uf) on the
straight line 1

o The span of the 2-dimensional right null space of W is
the bundle of planes with the straight line 1 as axis

20



Straight Lines in P° as Linear Combination of Planes

e The dual representation as the right null space of

the matrix
~ T
vl
q

contains the planes p and q, that intersect in the
straight line 1

- T
o The span of W* ist the bundle of planes \'p + 1'q

with the axis 1 _* Relationship between the two
o The span of the 2-dimensional right null space of W™ is representations:
the bundle of points on the straight line 1 as axis ~ o~ ~ = |
WW' = WW* = 05,
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Example

e The x-axis ...
o ...is spannend by the pointa = (0,0,0) " and the direction of the z-axis b = (1,0, 0) " and thus
~ 0 0 0 1
W =
(1 0 0 O)
- : . T . A b
o ...is the right null space of the zy-plane p = (0,0,1,0) ' and the zz-plane p = (0, 1,.0,0) S and thus
o

W*:(O 0 1 0) d KCZ/

01 00

© >
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Union and Intersection of Points, Lines and Planes

x4



e The plane m, given by the union of the straight
line W with the point X is the right null space of
the matrix M, containing W and X, i.e.

p— —
~

W

i—l_

Mm=0 with M=

e The point X, given by the intersection of the
plane m and the straight line W* is the right null

space of the matrix M, containing W* and 1,
i.e.

~

'W'*

m'

—~

Mx =0 with M=
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Example

0 0 1
and the

0 0

A AN

e The plane m, given by the union of the straight line W = (

1
DOint(%)_J\l) is the right null space of / o
0 [0/]0 1

~

M=1|1/0/0 O Whlchresultsmm (0,1,0,0)
0(0/ 1 1 k-G

0 o o

e The point P, given by the intersection of the plane z = 1 and the straight line

~ 0 0 1 0\, ,
W* = is the right null space of
0O 1 0 O




o O O

o = O

=

0

which results in p = (1,0,0,0) "
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Pliicker Coordinates

Fi
- A -
e For the line given by the two points a, b it holds W = ‘£T , rank(W) = 2
e For two other points a’, b’ on the same line 1 it holds
- T_
- a |= 2//Ia( *%?lb =~ % . A1 A12
W' = , rank(W') =2 and W' = AW/ with A = , det(A) # 0
~ T A A
b’ 21 A22

B o ;17/'01 "‘/(17'7. b
e |n particular we get

a; b; A1 A2 [a; b a; b a; b\ | .
b =y ’ = det| , ., | =detA . det , 1,7=1,...,4
a; bj Ao1 A22) \aj b aj b a; b

J
\ - 7
~

I:lij



i 1t in: ([ :l13:l14:l23:l24:l34)
e Asl;; =0, (;1) = 6 independent quantities remain ( 12
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Pliicker Matrix

e The Pliicker Matrix L describes the straight line through the two points a, b:
( 0 l12 l13 l14

~ - — [ [
L = ﬁb—r — bﬁT = l12 0 23 24 ] 1. €. lz'j = aibj — bz-aj
—li3 —lg 0 I3

\—l14 —loy —l3s O

e Example: Representing the x-axis as Plucker matrix, defined by the two points
a=(0,0,0,1)" andb = (1,0,0,0)":
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Properties of Pliicker Matrices

~

e L is a skew symmetric homogeneous 4 X 4 Matrix
e rank(L) =2
O
o 2-dim null space is the bundle of planes defined by the straight line (it holds LW* = 0445)

e 4DOF

o 6 independet entries - homogenity - det(L = 0)

~

e L=ab' —ba'
o gereralization of the crossproduct to 4D space (6 subdeterminants of [é, E])

o L isindependent of the choice of a, b on the line, as forany ¢ = a + ,uf) it holds

~ ~

L'=a¢' —¢éa' =a(@'+pub')—(a+pub)a' =ab' —ba' =L



~ Ay A~

e If X' = HxX is a point transform, the Pliicker Matrix is transformed by L’ = HLH "
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Dual Pliicker Matrices

e The dual Plicker matrix L* = pa' — ap' describes the intersection of planes P, q

J Trgnsforrgatif)n ot the dual Pliicker matrix L* with the homography His given by
(H—I)TL*H—I
e Relationship between the Plicker matrix L and its dual L*:
lig:lig i lig i log i lyg i lgg = 154 : Uy 1 15g 1 174 2 U35 2 1T,
e Union and Incidence

o Plane through point and straight line: m = L*x

o Point on straight line: L*% = 0

o |Intersection between plane and straight line: X = Lin
o Straight line in plane: L*m = 0

o Coplanar straight lines: [I:l, Lo,... jx=0

28



Example: Intersection and the Pliicker Matrix

e For the intersection X of the z-axis with the plane z = 1 it holds X = Lin and thus

(0 0 0 -1\ /1 1
(oo o0 o o | o
*~1o 0o 0 o o | o

\1 0 0 0/ \-1 1
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Pliicker Coordinates for non-vanishing Points

e For non-vanishing points a, b, i.e. & = (a1,a2,a3,1)",b = (b1, ba, b3, 1) T it holds

(la1,l42,143) " =b—a and (las,l31,012) =axb
e The l;; can be interpreted as a homogeneous vector

1 T 5
1= (la1,laz, las, los, Us1, la2)  €P
o They are called Pliicker coordinates if the condition det(L) = 0 holds, i.e. if
(a1, Loz, Las) (La3, U1, 1a2) ' = laalas + laalsy + laglio = 0

(only then the vector represents a straight line)
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Properties for Pliicker Coordinates

e For the two straight lines

1= (1,0, 00, 1, 13 1L), 12 = (12,,1%,,12,,12,,12,,12,) through points a;, by
S———r —— S———r ——

up Vi L} 5) Vo

and as, bs it holds:
o 1 and 12 are coplanar (intersect) iff, the four points are coplanar, i.e. iff

det(a1, by, 82, b2) = 13135 + 1515 + Usldy + 13alhy + 115 + U155
=u;ve +ugvy; =0

o Ifuyvy + ugve < 0then It passes 12 counter clockwise

o Ifu;vy + ugvy > 0then I passes 12 counter clockwise
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Euclidean Transformations in IP°

e Euclidean transformations in P® have 6 DOF
o Translation around the vector T = (¢, t,, t,) ", with homogeneous transformation matrix

(1 0 O tw\
0 1 0 ¢ B I T

0 01 ¢t,| |07 1

\0 0 0 1)

o (Euler) Rotations around the z, y, 2-Axis, i.e. R = R,R R ; with homogeneous transformation matrix

(7“11 12 Ti13 0\
T21 T929 T23 0 . R 0
0" 1

r31 T32 T3z O
\0 0 0 1/




o General homogeneous representation of Euclidean transformations

R

i—_’ — HEi p— lo_l_

T| . . T
Rk with R'"R =1 and det(R)=1
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Rotations in R®




= (Right-handed) rotation around

1 0 0

= the x-axis Rx(a) — 8 g?ﬁg —Cglnaa
0 O 0

cosf 0 sinf

= the y-axis R,(8) = _S?nﬁ (1) co(;ﬁ
0 0 0

cosy —sinf 0

= the z-axis R.(y) = Sig’r Cogﬁ (13

0 0 0

0 y

0

0 N

1 R
A
y

0 ™~

0 ap

0

1 X
VA

0

0

0

1

33



Rotations in R3 at a given Point p

1. Translate object such that the point p goes to the origin (using matrix T)
2. Rotate object (using matrix R)
3. Translate object back to point p (using matrix T-1)

M=T7-R-T = IOIT I1)] [t? (1)] IOIT _1p] B [;1 ' _1R)p]



Euler Rotations

e Rotations around the x, y, z axis are called Euler Rotations and «, 3, y Euler Angles

e Drawbacks of Euler Rotations

O

Order matters
R(a) - R(B) - R(v) # R(7) - R(B) - R(a)
Not unique, i.e.
R(a) - R(B) - R(y) = R(axm) - R(B+m) - R(y £ )
Gimbal Lock

o Rotations of 7/2 can lead to interference of two

axis

Unsuitable for animation and optimization

o No meaningful interpolation of two orientations

Gimbal Lock

35



Angle-Axis Rotations




= Instead of three angles give a (normalized) axis vector
n = (x,y,2)T and an angle ¥ to describe a rotation

Rn,g) = R7-Ry1-Ry-Ry R

x*(1 —cosp) +cosep  xy(l —cosp) — zsing  xz(1 — cosp) + ysingp

B xy(l —cosp) + zsing  y*(1 —cosp) +cosep  yz(l —cosp) — xsing

a xz(1 —cosp) — ysing  yz(l —cosp) + xsing  z2(1 — cosp) + cos
0 0 0

= Standard description for a rotation used in computer graphics
= No gimbal lock

= Still not suitable for animations (meaningful interpolation
between orientations not possible)

= O O o
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Some Recap of (Rotation with) Complex Numbers

= A point p = (x, )T in the plane can be represented (using polar
coordinates) as a complex number

p = |p||(cosa + isina) = ||p||e*

= Multiplication of

a=[lpfle" - e” =

With = = ||p||cosa, y = ||p]| sin «

z'\  (cosf
y' ] \sing

p=(x,y)

* =||p!/|(cosa+isina)
L

plle**with e*® results in

X

plle’®*?) = |Ip||(cos(a + B) + isin(a + 5))

this can be written as

—sinfB)\ [« o4
cos f3 ) (y) d |‘» .
(L(.

cos b
sin 3

p

sinf} '
cos 3 :

(cosf,sinf})
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Quaternions




= A quaternion

X
q=_s 1+ z i+ y j+ _z s, | ¥ [s, V]
real imaginary imaginary imaginary i <] |
withi2=2 =k =ijk=- y
j j &
-ICk/ \j:) 1

W. R. Hamilton
1805-1865

is the three-dimensional generalisation of a complex number

= Discovered 1853 by W. R. Hamilton
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Some important Properties of Quaternions

e Addition (associative, commutative, neutral element is 0 = |0, (0, 0, 0)])
q: +q2 = [$1 + 82, V1 + V2

e Multiplication (not commutative, neutral element is 1 = [1, (0, 0, 0)])
Q1 - gz = [81- 82 — (V1,V2), §1Va + 82V + V1 X V3]
e Distributive
q(r+s)=qr+qs and (r+s)q=rq-+sq
e [ength
lall = VT F T T4+ 7
e Conjugate
q=[s,—v] with q-g=s+|v[*=]q|?




e |nverse
q ' =|q|?-

q

(lal =1 = q~*

q)
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Quaternions and Rotation

e Arotation around the axis v and the the angle ¢ can be described by a unit
quaternion

. @ }
_ xr xr . — 1
q= [cos 5 , sin 5 v, |lq|| =

e Rotating a point p with a quaternion q is done by
R(p) =q-py-q with p, = [0, p]

e Quaternions q and —q (opposite direction and angle) describe the same roation, as

e Concatenation of rotations

R2(Ri1(P)) =q2- (41 Pg- Q1) Q2 = (2 - d1) - Py - (a1 - 92)
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SLERP (Spherical Linear intERPolation)




= Linear interpolation (LERP)

= Given starting and end point po, p:1,interpolation parameter ¢ € [0,1]

LERP(po, P1,t) = (1 —t)po + tP1

~ Spherical linear interpolation (SLERP) ® | 5rp (00 pr. 0.2) P!
= LERP on the surface of a (unit) sphere

sin [(1 — t)Q}] sin [t(}]

sin {2 0t sin {2

Using quaternions q = [cos g, sin gv] this can be written as

SLERP(po, p1,t) =

SLERP(qo,q1,%) = qo (a5 'q1)" = qoexp (¢ - log (g5 'a1)) with

log (q) = [O, gv] , eXp ([O, gv]) = [cos g,sing : V] =q

41



Similarity Transformations in P3

e Euclidean transformations and isotropic scaling (7 DOF)

o Homogenous matrix vector representation

|

s 0 O
B 0 s O
- 0 0 s
sR T

OT

r11
r21

31
OT

T12
722
r32

713
723
33

T

1

1]52‘. with RTR =1 (and det(R) = 1)
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Special Affine Transformations in [P3

e Similarity transformations and anisotropic scaling (? DOF)
o Homogenous matrix vector representation

(a:’ [ [(sz 0 0 11 T2 T13 1 /=
y'\ O Sy 0 . 921 T929 Ta23 T (y\

0 0 s,

\1) | o7 1] \1/
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Special Affine Transformations in [P3




Affine Transformations in P3

e General affine transformation (12 DOF)

o Homogeneous matrix vector representation

/
(fl?\ (all aij2 a3

!/

Yy

a21 Qa2 Qaz3
2z a
1) o

can be written in the form (see also camera models)

32 033

( \ " (b11 bz bis
B 0 b b2
- 0 0 b33
\1) o7
A T
orx' = H x = [OT 1]}:
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Projective Transformations in P3

e General projective transformation (15 DOF)
o Homogeneous matrix vector representation

can be written in the form

Y

) N L A
orx' = Hx =
41 P42 DPa3

(-’;,’\

(@
)

o'
\

( P11
D21
D31

\par

b11

P12
Db22
P32
P42

P13
Db23
P33
P43

ba3

D43

P\ ()

D24
D34
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Overview of 3D Transformations

Transformation Matrix # DOF Preserves
translation I t]sx4 3 orientation
rigid (Euclidean) R t]3x4 6 length
similarity sR tlsxg 7 angles

affine A t]3.4 12 parallelism
projective H| 454 15 straight lines

e 3D transformations are defined analogously to 2D transformations

e 3 X 4 matrices are extended with a fourth [0 ' 1] row for homogeneous transforms
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Transformations on Co-Vectors

If a point X is transformed by a perspective 2D (3D) transformation H as

— - r

' — TS Tt [oat Z
x = Hx ( 67y <L
for a transformed 2D line (3D Plane) it must hold PR4 X(
7

0=T'D-1"fiz - HTI’)E] ™~ /¢

and therefore Qa ' / X
i, — H_Ti NP o~ al T)'%
We =4 a p=(+ )K

Thus, the action of a projective transformation on a co-vector such as a 2D line or 3D
plane can be represented by the transposed inverse of the matrix.

y _A'(' T
T R,

The transformation on a 3D line LL is given by HLH "
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Plane at infinity

e If points on M, = (0,0, 0, 1)T are mapped by an affine transformation H it holds

0]

i AT olfo
~ ! —I\T =~ _ s
e, = (H )]““""_[—'I‘TA—T 1] o| =™
1

e The plane at infinity iy, = (0,0,0,1) " is fixed under H, iff H is an affine
transform
e Properties of the plane at infinity

o Canonical position My, = (0,0,0,1) "
o Contains the directions (vanishing points)

o Two planes are parallel iff their intersection line 1o, = (:L'l, Lo, T3, O)T IS in My



o A straight line is parallel to a straight line (or a plane) iff its intersection is in M
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