3D Computer Vision (SoSe2024)

Introduction

Prof. Dr. Ulrich Schwanecke

RheinMain University of Applied Sciences

How to use the HTML slides

- Use the keys **left/right** for navigating through the slides.
- Press f/ESC to enter/leave fullscreen mode.
- Double-click an item (e.g. an image) to zoom in/out.
- If the bottom boundary flashes on slide change, something was written on the virtual whiteboard.
 - Scroll down to see it.

About myself

Who am I?

- Born in Darmstadt
 - Grown up in Wiesbaden
- JoGu Mainz
- TU Darmstadt
- MPI Informatik, Saarbrücken
- Daimler Chrysler Research, Ulm
- RheinMain University of Applied Sciences, Wiesbaden
 - Gründungsmitglied hessian. Al
 - Mitgründer aivju.de

About this course

Course Goal and Content

Goal

- Gain an understanding of the theoretical and practical concepts of computer vision
 - Focus on 3D vision
- After this course, you should be able to
 - develop and train computer vision models
 - reproduce results and
 - conduct original research

(Planned) Content (12 Lectures)

- 1. Introduction, Organization
- 2. The 1D and 2D projective space
- 3. The 3D projective space
- 4. Conic sections and Quadrics
- 5. Camera Models
- 6. Camera Calibration
- 7. Shape from Shading and Photometric Stereo
- 8. Multi-view Geometry
- 9. Multi-view Reconstruction
- 10. Depth Estimation
- 11. Motion
- 12. Shape from Motion

Organization

- SWS 2V + 2Ü, 6 ECTS, Total Workload: 180h
- **Lecture** (13)
 - Monday, 14:15-15:45, 04 422
 - Apr. 15/22/29, May. 06/13/27, Jun. 03/10/17/24, Jul. 01/08/15
 - All lecture related information at http://cvmr.info/lectures/3DCVSS24/ (user: 3DCV passwd: sose2024)

Exercise Sessions

Exercises are mandatory [Day/time to be determined]

Exam

- Content: lectures and exercises [Very likely written (Day/time will be announced)]
- To qualify for the exam you have to
 - \circ have $\geq 50\%$ of all achievable points ($\geq 25\%$ for each problem set) and present at least one assignment

Course Materials

Books

- R. Szeliski, Computer Vision: Algorithms and Applications, Springer 2011 https://szeliski.org/Book
- Y. Ma, S. Soatto, J. Kosecka, S. S. Sastry, An Invitation to 3-D Vision From Images to Geometric Models,
 Springer 2004, https://www.eecis.udel.edu/~cer/arv/readings/old_mkss.pdf
- R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press 2003, https://www.robots.ox.ac.uk/~vgg/hzbook/
- I. Gooldfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press 2016 https://www.deeplearningbook.org
- J. E. Solem, *Programming Computer Vision with Python*, O'Reilly 2012
- V. K. Ayyadevara, Y. Reddy, Modern Computer Vision with PyTorch, Packt 2020
- M. P. Deisenroth, A. A. Faisal, C. S. Ong, Mathematics for Machine Learning https://mml-book.github.io
- K. B. Petersen, M. S. Pedersen, *The Matrix Cookbook* http://www.cs.toronto.edu/~bonner/courses/2012s/csc338/matrix_cookbook.pdf

Course Materials

Tutorials

- The Python Tutorial: https://docs.python.org/3/tutorial
- Numpy Quickstart: https://numpy.org/devdocs/user/quickstart.html
- PyTorch Tutorial: https://pytorch.org/tutorials

• Frameworks, IDEs

- Visual Studio Code: https://code.visualstudio.com/
- Google Colab: https://colab.research.google.com

Courses

- Slide deck covering Szeliski's book https://szeliski.org/Book
- I. Gkioulekas, Computer Vision https://www.cs.cmu.edu/~16385/
- A. Owens, Foundations of Computer Vision https://web.eecs.umich.edu/~ahowens/eecs504/w20/

Prerequisites

- Basic math skills
 - Linear Algebra, Calculus, Probability
- Basis computer science skills
 - Variables, functions, loops, classes, algoritms
- Basic Python coding skills
 - https://docs.python.org/3/turorial/
- Basic PyTorch coding skills
 - https://pytorch.org/turorials

Prerequisites

Linear Algebra

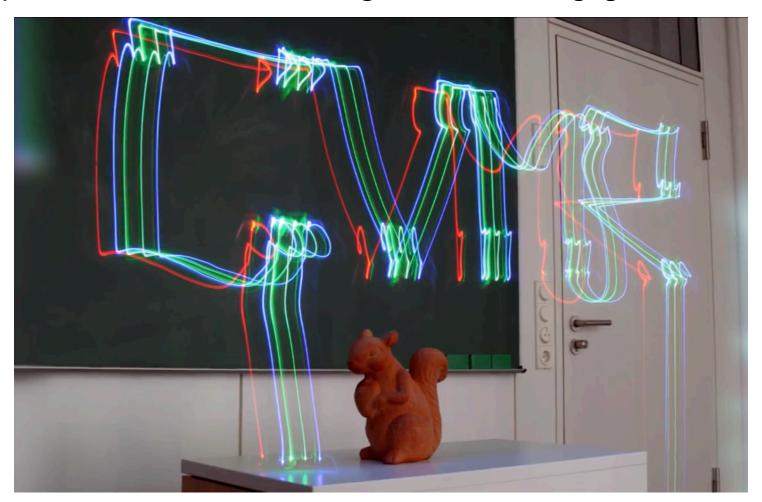
- \circ Vectors: $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
- \circ Matrices: $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$
- Operations:
 - $\circ \mathbf{x}^{\mathsf{T}} \mathbf{y}, \mathbf{x} \times \mathbf{y}$
 - \circ **Ax**
 - \circ $\mathbf{A}^{\top}, \mathbf{A}^{-1}, \operatorname{trace}(\mathbf{A}), \det(\mathbf{A}), \mathbf{A} + \mathbf{B}, \mathbf{AB}$
- \circ Norms: $||\mathbf{x}||_1, ||\mathbf{x}||_2, ||\mathbf{x}||_{\infty}, ||\mathbf{A}||_F$
- \circ Eigenvalues, Eigenvectors, SVD: $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$

Calculus

- \circ Multivariate functions: $f: \mathbb{R}^n \to \mathbb{R}$
- \circ Partial derivatives: $rac{\partial f}{\partial x_i}, i=1,\ldots,n$, Gradient
- \circ Integrals: $\int f(x) dx$

Probability

- \circ Probability distributions: P(X=x)
- \circ Expectation: $\mathbb{E}_{x \sim p}[f(x)] = \int_x p(x) f(x) dx$
- \circ Variance: extstyle extstyle
- \circ Marginal: $p(x) = \int p(x,y) dy$
- \circ Conditional: p(x,y) = p(x|y)p(y)
- \circ Bayes rule: p(x|y) = p(y|x)/p(y)
- Distributions: Uniform, Gaussian


Time Management

Activity	Times	Total
Attending (watching) the lecture	2h / week	24h
Self-study of lecture materials	2h / week	24h
Participation in exercise	2h / week	24h
Solving the assignments	6h / week	72h
Preparation for the final exam	36h	36h
Total workload		180h

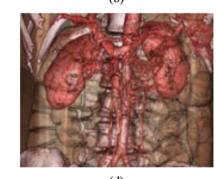
About Computer Vision

Computer Vision

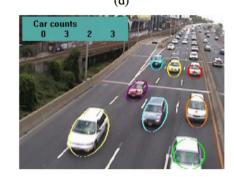
• Goal of Computer Vision is to **convert light into meaning** (geometric, semantic, ...)

Computer Vision Applications

- Optical Character Recognition (a)
- Mechanical Inspection / 3D Modelling
 (b)


- Retail (c)
- Medical Applications (d)

- Automotive (Savety and Driving) (e)
- Surveillance (f)



[R. Szelisky ©]

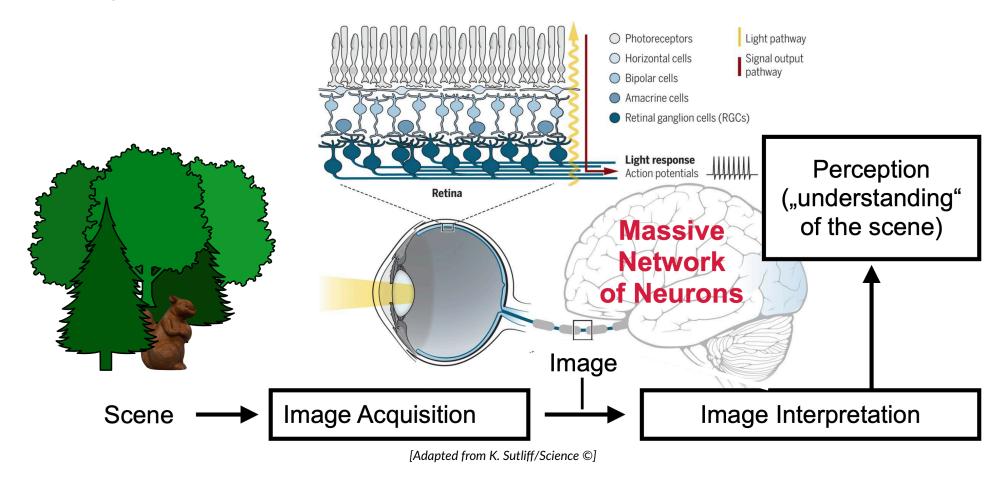
Computer Vision Applications

- Image Stitching / Video Stabilization
- Exposure Bracketing
- Robotics
- Mobile Devices
- Accessibility (e.g. Image Captioning), ...

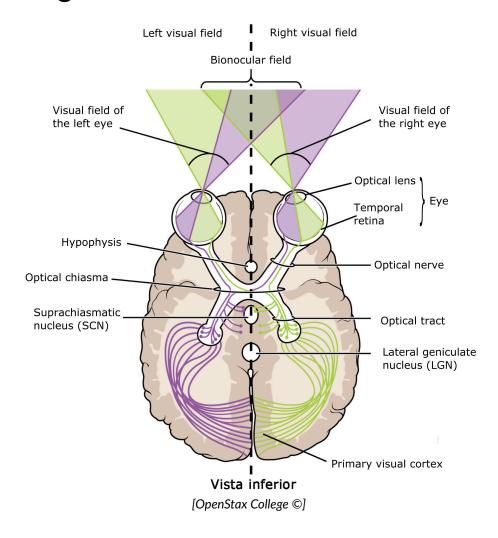
"A bird that is sitting on a branch"

[R. Szelisky ©]

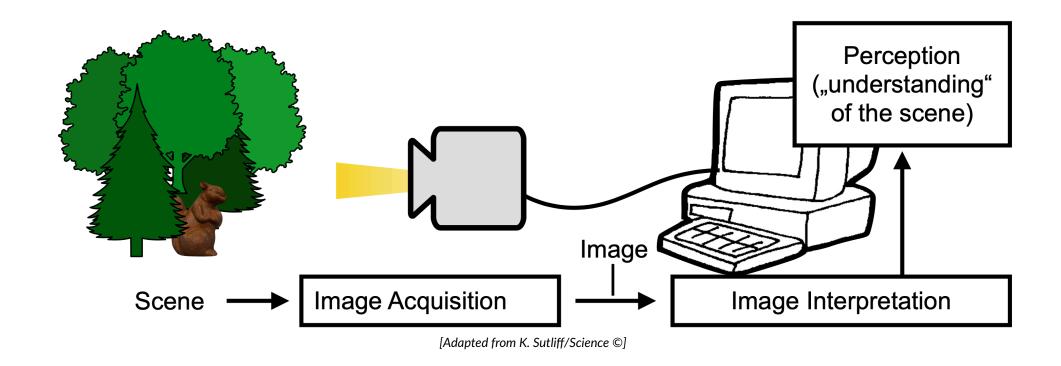
[R. Szelisky ©]


[quadruped.de ©]

Mobile AR


Biological Vision vs. Computer Vision

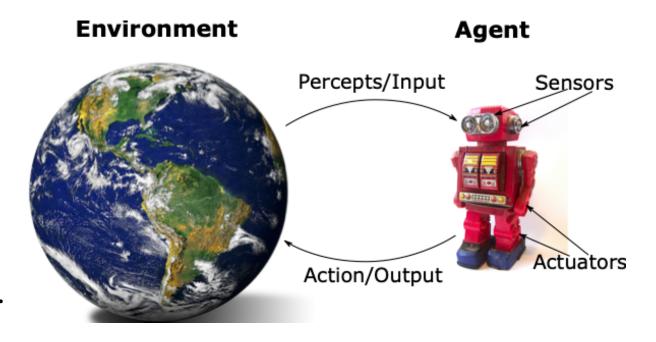
 Human Vision is the process of discovering what is present in the world and where it is by looking


Biological Vision vs. Computer Vision

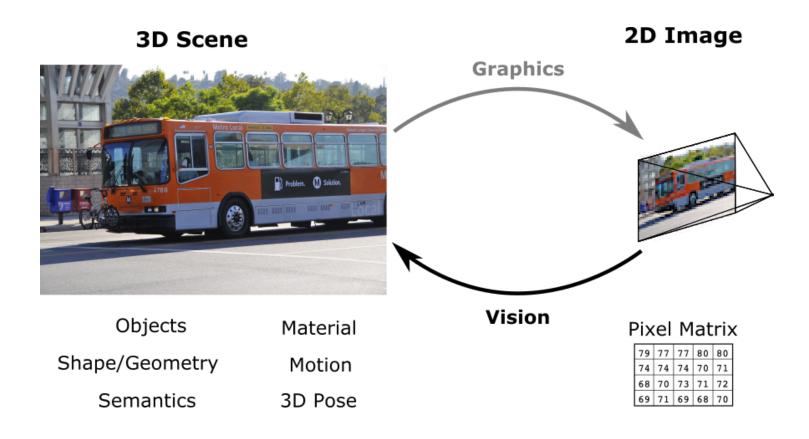
Over 50% of the processing in the human brain is dedicated to visual information

Biological Vision vs. Computer Vision

 Computer Vision is the study of analyzing images to achieve results similar to those as by humans



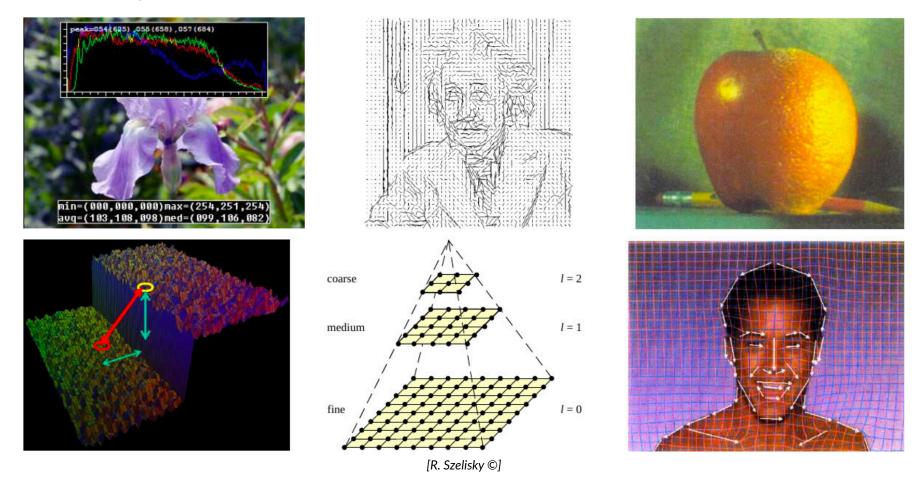
Artificial Intelligence


"An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves"

[John McCarthy at Dartmouth Summer Research Project on Artificial Intelligence, 1956]

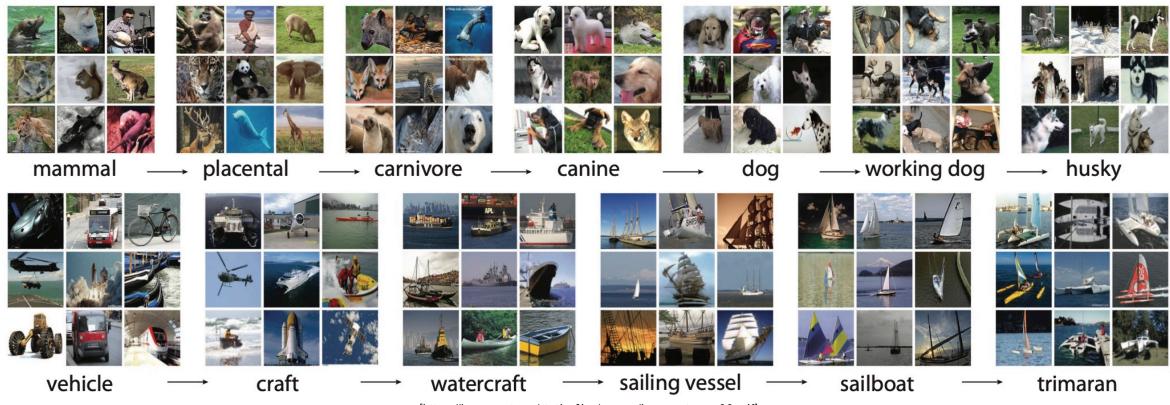
- Machine Learning
- Computer Vision
- Computer Graphics
- Natural Language Processing
- Robotics & Control
- Art, Industry 4.0, Education, ...

Computer Vision vs. Computer Graphics

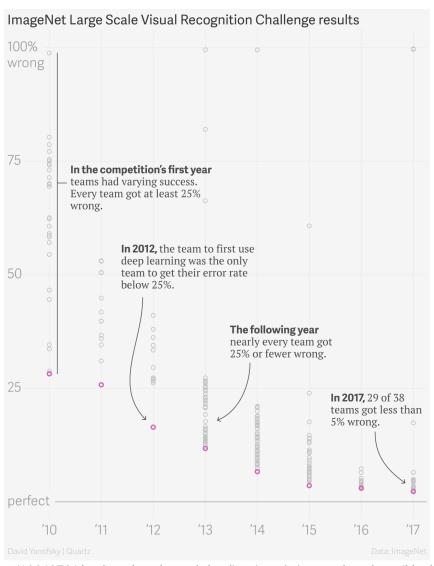


Computer Vision is an ill-posed inverse problem

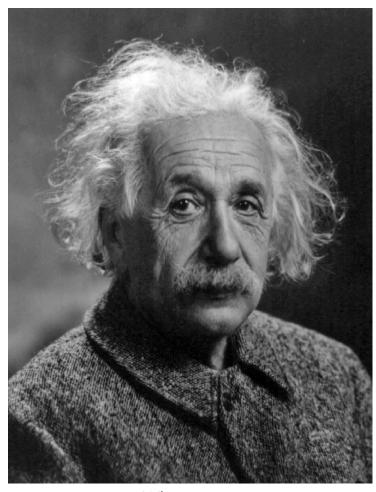
- Many 3D scenes yield the same 2D image
- Additional constraints (knowledge about world) are required


Computer Vision vs. Image Processing

• Computer Vision seeks to achieve **full scene understanding** (in contrast to (classical) Image Processing)


Computer Vision and Machine Learning

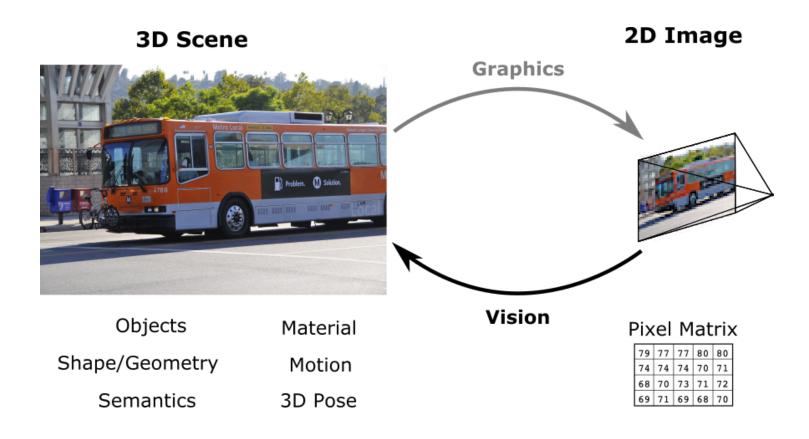
ImageNet https://www.image-net.org/



[https://image-net.org/static_files/papers/imagenet_cvpr09.pdf]

The Deep Learning Revolution

Why is Visual Perception hard?

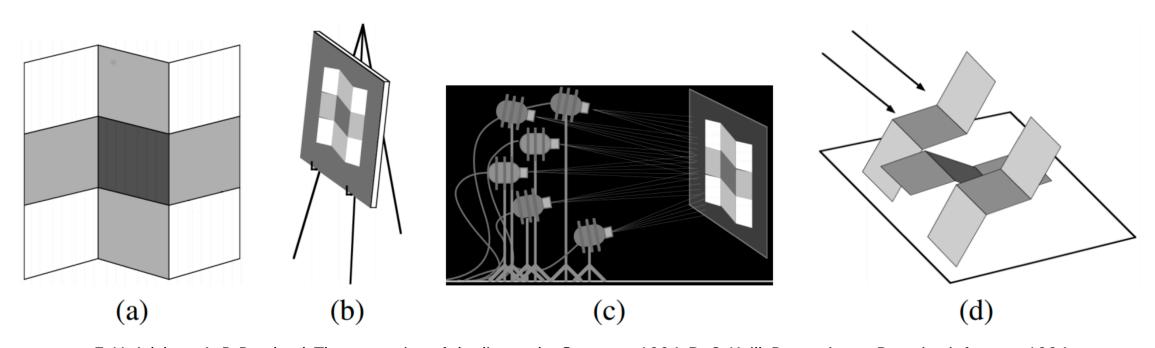


What we see

80	77	80	79	78	80	79	80	79	79	75
79	79	82	82	80	78	77	81	81	79	76
79	77	80	79	77	77	80	80	74	75	69
77	78	77	74	74	74	70	71	73	72	65
70	68	71	68	70	73	71	72	69	73	62
71	73	72	69	71	69	68	70	71	73	59
75	75	73	72	76	76	74	76	74	74	59
76	75	75	73	74	75	72	71	71	69	54
67	66	65	67	67	67	69	67	68	68	53
65	64	62	63	62	61	64	67	69	69	52
68	69	70	70	71	73	72	73	71	70	56
70	72	69	70	70	69	70	71	70	70	55

What the computer sees

Why is Visual Perception hard?


Image are 2D Projections of the 3D World

- Many 3D scenes yield the same 2D image
- Additional constraints (knowledge about world) are required

Images are 2D Projections of the 3D World

Adelson and Pentland's workshop metaphor:

• To explain an *image* (a) in terms of reflectance, lighting and shape, a *painter* (b), a *light designer* (c) and a *sculptor* (d) will design three different, but plausible, solutions.

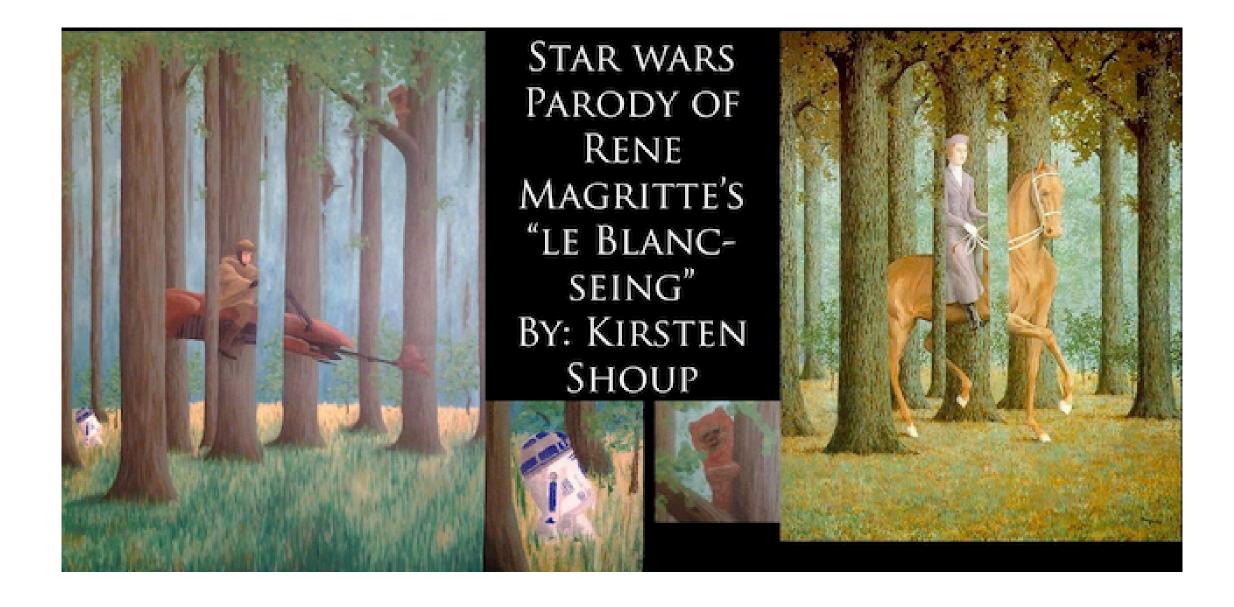
E. H. Adelson, A. P. Pentland: The perception of shading and reflectance, 1996. D. C. Knill: Perception as Bayesian inference, 1996

Images are 2D Projections of the 3D World

Perspective Illusion:

Images are 2D Projections of the 3D World

Perspective Illusion (Ames Room)

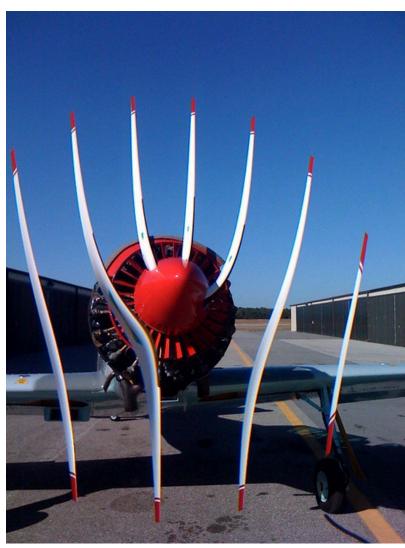


3D Reconstruction

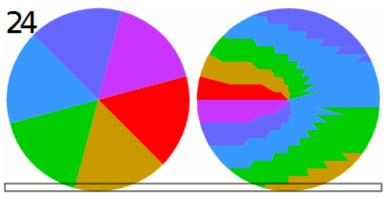
Challenges: Occlusion

[https://imgur.com/a/nQJss ©]

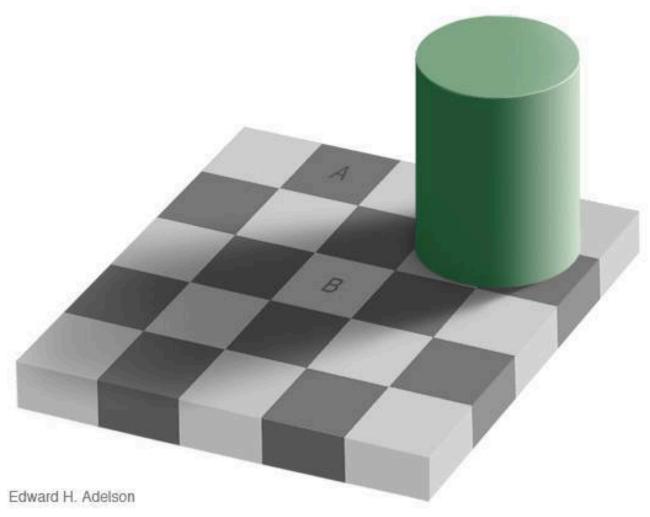
Challenges: Illumination

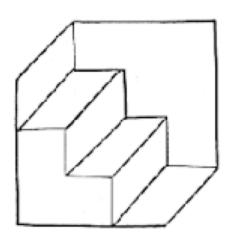


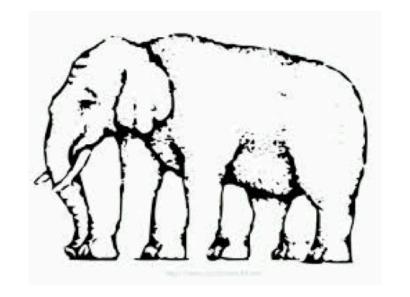
Challenges: Motion



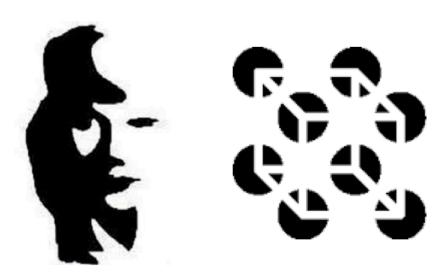
 $[https://commons.wikimedia.org/wiki/File:Heliopsis_helianthoides_var._scabra_Summer_Sun_4zz.jpg\#/media/File:Heliopsis_helianthoides_var._scabra_Summer_Sun_4zz.jpg\#/media/File:Heliopsis_helianthoides_var._scabra_Summer_Sun_4zz.jpg\#/media/File:Heliopsis_helianthoides_var._scabra_Summer_Sun_4zz.jpg\#/media/File:Heliopsis_helianthoides_var._scabra_Summer_Sun_4zz.jpg\#/media/File:Heliopsis_helianthoides_var._scabra_Summer_Sun_4zz.jpg\#/media/File:Heliopsis_helianthoides_var._scabra_Summer_Sun_4zz.jpg\#/media/File:Heliopsis_helianthoides_var._scabra_Summer_Sun_4zz.jpg\#/media/File:Heliopsis_helianthoides_var._scabra_Summer_Sun_4zz.jpg\#/media/File:Heliopsis_helianthoides_var._scabra_Summer_Sun_4zz.jpg\#/media/File:Heliopsis_helianthoides_var._scabra_Summer_Sun_4zz.jpg\#/media/File:Heliopsis_helianthoides_var._scabra_Summer_Sun_4zz.jpg\#/media/File:Heliopsis_helianthoides_var._scabra_Summer_Sun_4zz.jpg\#/media/File:Heliopsis_helianthoides_var._scabra_Summer_Sun_4zz.jpg\#/media/File:Heliopsis_helianthoides_var._scabra_Summer_Sun_4zz.jpg\#/media/File:Heliopsis_helianthoides_var._scabra_Summer_Sun_4zz.jpg\#/media/File:Heliopsis_helianthoides_var._scabra_Summer_Sun_4zz.jpg\#/media/File:Heliopsis_helianthoides_var._scabra_Summer_Sun_4zz.jpg\#/media/File:Heliopsis_helianthoides_var._scabra_Summer_Sun_4zz.jpg\#/media/File:Heliopsis_helianthoides_var._scabra_Summer_Sun_4zz.jpg\#/media/File:Heliopsis_helianthoides_var._scabra_Summer_Sun_4zz.jpg\#/media/File:Heliopsis_helianthoides_var._scabra_File:Heliopsis_helianthoides_var._scabra_File:Heliopsis_helianthoides_var._scabra_File:Heliopsis_helianthoides_var._scabra_File:Heliopsis_helianthoides_var._scabra_File:Heliopsis_helianthoides_var._scabra_File:Heliopsis_helianthoides_var._scabra_File:Heliopsis_helianthoides_var._scabra_File:Heliopsis_helianthoides_var._scabra_File:Heliopsis_helianthoides_var._scabra_File:Heliopsis_helianthoides_var._scabra_File:Heliopsis_helianthoides_var._scabra_File:Heliopsis_helianthoides_var._scabra_File:Heliopsis_File:Heliopsis_File:Heliopsis_File:Heliopsis_File:Hel$


Challenges: Motion

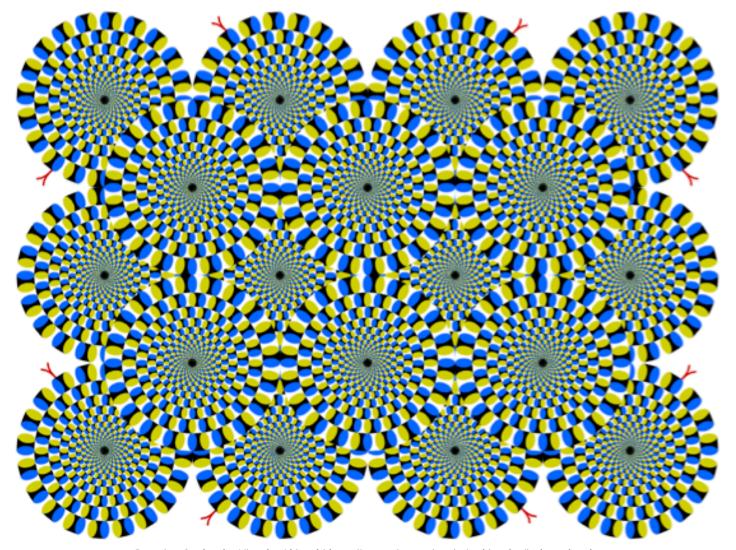

[https://commons.wikimedia.org/wiki/File:Rolling_shutter_näidis.png]



[https://commons.wikimedia.org/wiki/File:Rolling_shutter_effect.svg]



[http://persci.mit.edu/gallery/checkershadow]



Rotation Snakes by Kitaoka Akiyoshi http://www.ritsumei.ac.jp/~akitaoka/index-e.html

Challenges: Deformation and Intra Class Variation

Timeline of Computer Vision

1958 Frank Rosenblatt's perceptron machine.

1959 Hubel and Wiesel studied cat's visual cortex.

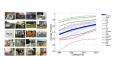
1966 **MIT Summer** Vision Project

1973 **Pictorial** Object Recognition

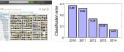
Structures for

Scale Invariant Feature Transform

2003 Panorama from multiple


views

Hand-written Digital recognition



2010 2003 3D from 3D from Millions of multiple views Photos

2005 - 2012 **PASCAL VOC**

2010 - now ImageNet

2012 AlexNets, Top5 error 16.7%

550m years BC Evolution Big Bang, **Light Switch Theory**

1839 William Talbot created the first light-fast and permanent photographs

1963 Larry Roberts's Ph.D. dissertation "Machine Perception of Three-Dimensional Solids"

1970s David Marr studied Stages of Visual Representation

1997 **Normalized Cut** and Image Segmentation

Face detection in the wide

segmentation Bag of Word and

2005 HoG and Pedestrian Detection

Object

Classification

2007 sparse coding

2009 **Deformable Parts Model**

2006

Supervised

dense image

labeling

Self-taught Learning and

2010 Feature Learning, Top5

2011 Understanding Depth Images In Realtime

2016

AlphaGo

Residual Nets, Top5 error 3.57%

2015 **Deep Artistic** Rendering

2015 RNNs for **Image Caption**

Next Lecture

- Classification of different geometries ...
 - Euclidean, Similarity, Affin, Projective
- ... and their transformations
 - 1D
 - non-projective 1D transformations
 - the projective line and its transformations
 - 2D
 - non-projective 2D transformations
 - the projective plane and its transformations