3D Computer Vision (SoSe2024)

About this course

Prof. Dr. Ulrich Schwanecke

RheinMain University of Applied Sciences

Course Goal and Content

Goal

- Gain an understanding of the theoretical and practical concepts of 3D Computer Vision, e.g.
 - Camera calibration
 - Epipolar geometry
 - Structure-from-Motion
 - Image rectification
 - Block matching
 - Volumetric fusion
 - o ...
- Be able to
 - develop and train computer vision models,
 - repoduce results and conduct original research

• (Planned) Content

- 1. Image Formation
- 2. 3D Projective Space and 3D Motion
- 3. Conic Sections and Quadrics
- 4. Camera Models and Calibration
- 5. Shape from Shading and Photometric Stereo
- 6. Structure from Motion
- 7. Multi View Reconstruction, Optical Flow
- 8. Siamese Networks, End-to-End Learning
- 9. Data Driven 3D Reconstruction
- 10. Neural Scene Representations
- 11. Diverse Topics in 3D Computer Vision

Organization

- SWS 2V + 2Ü, 6 ECTS, Total Workload: 180h
- **Lecture** (13)
 - Monday, 14:15-15:45, 04 422
 - Apr. 15/22/29, May. 06/13/27, Jun. 03/10/17/24, Jul. 01/08/15
 - All lecture related information at http://cvmr.info/lectures/3DCVSS24/ (user: 3DCV passwd: sose2024)

Exercise Sessions

Exercises are mandatory [Day/time to be determined]

Exam

- Content: lectures and exercises [Very likely written (Day/time will be announced)]
- To qualify for the exam you have to
 - \circ have $\geq 50\%$ of all achievable points ($\geq 25\%$ for each problem set) and present at least one assignment

Course Materials

Books

- Y. Ma, et. al, An Invitation to 3-D Vision From Images to Geometric Models, 2004, https://www.eecis.udel.edu/~cer/arv/readings/old_mkss.pdf
- R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, 2003, https://www.robots.ox.ac.uk/~vgg/hzbook/
- R. Szeliski, Computer Vision: Algorithms and Applications, Springer, 2011, https://szeliski.org/Book
- I. Gooldfellow, Y. Bengio, A. Courville, *Deep Learning*, MIT Press, 2016, https://www.deeplearningbook.org
- J. E. Solem, *Programming Computer Vision with Python*, O'Reilly, 2012
- V. K. Ayyadevara, Y. Reddy, Modern Computer Vision with PyTorch, Packt, 2020
- M. P. Deisenroth, et al, Mathematics for Machine Learning, https://mml-book.github.io
- K. B. Petersen, M. S. Pedersen, *The Matrix Cookbook*, http://www.cs.toronto.edu/~bonner/courses/2012s/csc338/matrix_cookbook.pdf

Course Materials

Tutorials

- The Python Tutorial: https://docs.python.org/3/tutorial
- Numpy Quickstart: https://numpy.org/devdocs/user/quickstart.html
- PyTorch Tutorial: https://pytorch.org/tutorials

• Frameworks, IDEs

- Visual Studio Code: https://code.visualstudio.com/
- Google Colab: https://colab.research.google.com

Courses

- Slide deck covering Szeliski's book https://szeliski.org/Book
- I. Gkioulekas, Computer Vision https://www.cs.cmu.edu/~16385/
- A. Owens, Foundations of Computer Vision https://web.eecs.umich.edu/~ahowens/eecs504/w20/

Prerequisites

- Basic math skills
 - Linear Algebra, Calculus, Probability
- Basis computer science skills
 - Variables, functions, loops, classes, algoritms
- Basic Python coding skills
 - https://docs.python.org/3/turorial/
- Basic PyTorch coding skills
 - https://pytorch.org/turorials

Prerequisites

Linear Algebra

- \circ Vectors: $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
- \circ Matrices: $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$
- Operations:
 - $\circ \mathbf{x}^{\mathsf{T}}\mathbf{y}, \mathbf{A}\mathbf{x}, \mathbf{x} \times \mathbf{y}$
 - \circ $\mathbf{A}^{\top}, \mathbf{A}^{-1}, \operatorname{trace}(\mathbf{A}), \det(\mathbf{A}), \mathbf{A} + \mathbf{B}, \mathbf{AB}$
- \circ Norms: $||\mathbf{x}||_1, ||\mathbf{x}||_2, ||\mathbf{x}||_{\infty}, ||\mathbf{A}||_F$
- \circ Eigenvalues, Eigenvectors, SVD: $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$

Calculus

- \circ Multivariate functions: $f:\mathbb{R}^n o \mathbb{R}$
- \circ Partial derivatives: $rac{\partial f}{\partial x_i}, i=1,\ldots,n$, Gradient
- \circ Integrals: $\int f(x) dx$

Probability

- \circ Probability distributions: P(X=x)
- \circ Expectation: $\mathbb{E}_{x \sim p}[f(x)] = \int_x p(x) f(x) dx$
- \circ Variance: extstyle extstyle
- \circ Marginal: $p(x) = \int p(x,y) dy$
- \circ Conditional: p(x,y) = p(x|y)p(y)
- \circ Bayes rule: p(x|y) = p(y|x)/p(y)
- Distributions: Uniform, Gaussian

Time Management

Activity	Times	Total
Attending (watching) the lecture	2h / week	24h
Self-study of lecture materials	2h / week	24h
Participation in exercise	2h / week	24h
Solving the assignments	6h / week	72h
Preparation for the final exam	36h	36h
Total workload		180h

See you on Monday, April 25, 2024, in 04 422

