3D Computer Vision (SoSe2024)

About this course

Prof. Dr. Ulrich Schwanecke

RheinMain University of Applied Sciences

🚀 by Decker

Course Goal and Content

  • Goal
    • Gain an understanding of the theoretical and practical concepts of 3D Computer Vision, e.g.
      • Camera calibration
      • Epipolar geometry
      • Structure-from-Motion
      • Image rectification
      • Block matching
      • Volumetric fusion
      • …
    • Be able to
      • develop and train computer vision models,
      • repoduce results and conduct original research
  • (Planned) Content
    1. Image Formation
    2. 3D Projective Space and 3D Motion
    3. Conic Sections and Quadrics
    4. Camera Models and Calibration
    5. Shape from Shading and Photometric Stereo
    6. Structure from Motion
    7. Multi View Reconstruction, Optical Flow
    8. Siamese Networks, End-to-End Learning
    9. Data Driven 3D Reconstruction
    10. Neural Scene Representations
    11. Diverse Topics in 3D Computer Vision

Organization

  • SWS 2V + 2Ãœ, 6 ECTS, Total Workload: 180h
  • Lecture (13)
    • Monday, 14:15-15:45, 04 422
      • Apr. 15/22/29, May. 06/13/27, Jun. 03/10/17/24, Jul. 01/08/15
    • All lecture related information at http://cvmr.info/lectures/3DCVSS24/ (user: 3DCV passwd: sose2024)
  • Exercise Sessions
    • Exercises are mandatory [Day/time to be determined]
  • Exam
    • Content: lectures and exercises [Very likely written (Day/time will be announced)]
    • To qualify for the exam you have to
      • have \(\geq 50\%\) of all achievable points (\(\geq 25\%\) for each problem set) and present at least one assignment

Course Materials

Course Materials

Prerequisites

Prerequisites

  • Linear Algebra
    • Vectors: \(\mathbf{x}, \mathbf{y} \in \mathbb{R}^n\)
    • Matrices: \(\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m\times n}\)
    • Operations:
      • \(\mathbf{x}^\top\mathbf{y}, \mathbf{A}\mathbf{x}, \mathbf{x}\times\mathbf{y}\)
      • \(\mathbf{A}^\top, \mathbf{A}^{-1}, \text{trace}(\mathbf{A}), \text{det}(\mathbf{A}), \mathbf{A}+\mathbf{B}, \mathbf{AB}\)
    • Norms: \(||\mathbf{x}||_1, ||\mathbf{x}||_2, ||\mathbf{x}||_\infty, ||\mathbf{A}||_F\)
    • Eigenvalues, Eigenvectors, SVD: \(\mathbf{A}=\mathbf{UDV}^\top\)
  • Calculus
    • Multivariate functions: \(f:\mathbb{R}^{n}\rightarrow \mathbb{R}\)
    • Partial derivatives: \(\frac{\partial f}{\partial x_i}, i=1,\ldots, n\), Gradient
    • Integrals: \(\int f(x)dx\)
  • Probability
    • Probability distributions: \(P(X=x)\)
    • Expectation: \(\mathbb{E}_{x\sim p}[f(x)] = \int_{x}p(x)f(x)dx\)
    • Variance: \(\text{Var}(f(x))=\mathbb{E}[(f(x)-\mathbb{E}[f(x)])^2]\)
    • Marginal: \(p(x)=\int p(x,y)dy\)
    • Conditional: \(p(x,y)=p(x|y)p(y)\)
    • Bayes rule: \(p(x|y) = p(y|x)/p(y)\)
    • Distributions: Uniform, Gaussian

Time Management


Activity Times Total
Attending (watching) the lecture 2h / week 24h
Self-study of lecture materials 2h / week 24h
Participation in exercise 2h / week 24h
Solving the assignments 6h / week 72h
Preparation for the final exam 36h 36h
Total workload 180h

See you on Monday, April 25, 2024, in 04 422

ulrich.schwanecke(at)hs-rm.de